These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 7527202)
1. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Odenyo AA; Mackie RI; Stahl DA; White BA Appl Environ Microbiol; 1994 Oct; 60(10):3697-703. PubMed ID: 7527202 [TBL] [Abstract][Full Text] [Related]
2. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production. Odenyo AA; Mackie RI; Stahl DA; White BA Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201 [TBL] [Abstract][Full Text] [Related]
3. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Shi Y; Odt CL; Weimer PJ Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950 [TBL] [Abstract][Full Text] [Related]
5. Degradation of wheat straw and alkaline hydrogen peroxide-treated wheat straw by Ruminococcus albus 8 and Ruminococcus flavefaciens FD-1. Odenyo AA; Mackie RI; Fahey GC; White BA J Anim Sci; 1991 Feb; 69(2):819-26. PubMed ID: 2016208 [TBL] [Abstract][Full Text] [Related]
6. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Chen J; Weimer P Microbiology (Reading); 2001 Jan; 147(Pt 1):21-30. PubMed ID: 11160797 [TBL] [Abstract][Full Text] [Related]
7. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Shi Y; Weimer PJ Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951 [TBL] [Abstract][Full Text] [Related]
8. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. Koike S; Kobayashi Y FEMS Microbiol Lett; 2001 Nov; 204(2):361-6. PubMed ID: 11731149 [TBL] [Abstract][Full Text] [Related]
9. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria. Shi Y; Weimer PJ Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600 [TBL] [Abstract][Full Text] [Related]
10. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep. Krause DO; Dalrymple BP; Smith WJ; Mackie RI; McSweeney CS Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1797-1807. PubMed ID: 10439419 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of ruminal cellulose fermentation by extracts of the perennial legume cicer milkvetch (Astragalus cicer). Weimer PJ; Hatfield RD; Buxton DR Appl Environ Microbiol; 1993 Feb; 59(2):405-9. PubMed ID: 8434909 [TBL] [Abstract][Full Text] [Related]
12. Repeated ruminal dosing of Ruminococcus spp. does not result in persistence, but changes in other microbial populations occur that can be measured with quantitative 16S-rRNA-based probes. Krause DO; Bunch RJ; Conlan LL; Kennedy PM; Smith WJ; Mackie RI; McSweeney CS Microbiology (Reading); 2001 Jul; 147(Pt 7):1719-1729. PubMed ID: 11429450 [TBL] [Abstract][Full Text] [Related]
13. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls. Miron J; Duncan SH; Stewart CS J Appl Bacteriol; 1994 Mar; 76(3):282-7. PubMed ID: 8157547 [TBL] [Abstract][Full Text] [Related]
14. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Mosoni P; Fonty G; Gouet P Curr Microbiol; 1997 Jul; 35(1):44-7. PubMed ID: 9175559 [TBL] [Abstract][Full Text] [Related]
15. Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroides succinogenes S85. Lewis SM; Montgomery L; Garleb KA; Berger LL; Fahey GC Appl Environ Microbiol; 1988 May; 54(5):1163-9. PubMed ID: 3291761 [TBL] [Abstract][Full Text] [Related]
16. Magnesium requirement of some of the principal rumen cellulolytic bacteria. Morales MS; Dehority BA Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132 [TBL] [Abstract][Full Text] [Related]
17. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents. Michalet-Doreau B; Fernandez I; Peyron C; Millet L; Fonty G Reprod Nutr Dev; 2001; 41(2):187-94. PubMed ID: 11434522 [TBL] [Abstract][Full Text] [Related]
18. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85. Collings GF; Yokoyama MT Appl Environ Microbiol; 1980 Mar; 39(3):566-71. PubMed ID: 7189996 [TBL] [Abstract][Full Text] [Related]
19. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage. Min BR; Pinchak WE; Anderson RC; Hume ME J Anim Sci; 2006 Oct; 84(10):2873-82. PubMed ID: 16971591 [TBL] [Abstract][Full Text] [Related]
20. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study. Matulova M; Nouaille R; Capek P; Péan M; Forano E; Delort AM Appl Environ Microbiol; 2005 Mar; 71(3):1247-53. PubMed ID: 15746325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]