These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 7527202)
41. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Chaucheyras-Durand F; Masséglia S; Fonty G; Forano E Appl Environ Microbiol; 2010 Dec; 76(24):7931-7. PubMed ID: 20971877 [TBL] [Abstract][Full Text] [Related]
42. Adhesion of cellulolytic ruminal bacteria to barley straw. Bhat S; Wallace RJ; Orskov ER Appl Environ Microbiol; 1990 Sep; 56(9):2698-703. PubMed ID: 16348278 [TBL] [Abstract][Full Text] [Related]
43. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17. Atasoglu C; Newbold CJ; Wallace RJ Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199 [TBL] [Abstract][Full Text] [Related]
44. The effect of ammonia treatment on the solubilization of straw and the growth of cellulolytic rumen bacteria. Kolankaya N; Stewart CS; Duncan SH; Cheng KJ; Costerton JW J Appl Bacteriol; 1985 Apr; 58(4):371-9. PubMed ID: 3997690 [TBL] [Abstract][Full Text] [Related]
45. The hydrolysis of lucerne cell-wall monosaccharide components by monocultures or pair combinations of defined ruminal bacteria. Miron J J Appl Bacteriol; 1991 Mar; 70(3):245-52. PubMed ID: 2030098 [TBL] [Abstract][Full Text] [Related]
46. Degradation of maize stem by two rumen fungal species, Piromyces communis and Caecomyces communis, in pure cultures or in association with cellulolytic bacteria. Roger V; Grenet E; Jamot J; Bernalier A; Fonty G; Gouet P Reprod Nutr Dev; 1992; 32(4):321-9. PubMed ID: 1418394 [TBL] [Abstract][Full Text] [Related]
48. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. Shinkai T; Kobayashi Y Appl Environ Microbiol; 2007 Mar; 73(5):1646-52. PubMed ID: 17209077 [TBL] [Abstract][Full Text] [Related]
49. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum. Michalet-Doreau B; Fernandez I; Fonty G J Anim Sci; 2002 Mar; 80(3):790-6. PubMed ID: 11890416 [TBL] [Abstract][Full Text] [Related]
50. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Callaway ES; Martin SA J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145 [TBL] [Abstract][Full Text] [Related]
51. 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85. Bibollet X; Bosc N; Matulova M; Delort AM; Gaudet G; Forano E J Biotechnol; 2000 Jan; 77(1):37-47. PubMed ID: 10674213 [TBL] [Abstract][Full Text] [Related]
52. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Li Q; Siles JA; Thompson IP Appl Microbiol Biotechnol; 2010 Oct; 88(3):671-8. PubMed ID: 20645087 [TBL] [Abstract][Full Text] [Related]
53. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Hiltner P; Dehority BA Appl Environ Microbiol; 1983 Sep; 46(3):642-8. PubMed ID: 6639018 [TBL] [Abstract][Full Text] [Related]
54. Partial characterization of phylogeny, ecology and function of the fibrolytic bacterium Ruminococcus flavefaciens OS14, newly isolated from the rumen of swamp buffalo. Boonsaen P; Kinjo M; Sawanon S; Suzuki Y; Koike S; Kobayashi Y Anim Sci J; 2018 Feb; 89(2):377-385. PubMed ID: 29044947 [TBL] [Abstract][Full Text] [Related]
55. Detection and identification of rumen bacteria constituting a fibrolytic consortium dominated by Fibrobacter succinogenes. Shinkai T; Ueki T; Kobayashi Y Anim Sci J; 2010 Feb; 81(1):72-9. PubMed ID: 20163675 [TBL] [Abstract][Full Text] [Related]
56. Degradation and utilization of forage hemicellulose by rumen bacteria, singly in coculture or added sequentially. Fondevila M; Dehority BA J Appl Bacteriol; 1994 Nov; 77(5):541-8. PubMed ID: 8002478 [TBL] [Abstract][Full Text] [Related]
57. Molecular beacons: trial of a fluorescence-based solution hybridization technique for ecological studies with ruminal bacteria. Schofield P; Pell AN; Krause DO Appl Environ Microbiol; 1997 Mar; 63(3):1143-7. PubMed ID: 9055429 [TBL] [Abstract][Full Text] [Related]
58. The effect of fibre source on the numbers of some fibre-degrading bacteria of Arabian camel's (Camelus dromedarius) foregut origin. Samsudin AA; Wright AD; Al Jassim R Trop Anim Health Prod; 2014 Oct; 46(7):1161-6. PubMed ID: 24898095 [TBL] [Abstract][Full Text] [Related]
59. Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol. Kenealy WR; Cao Y; Weimer PJ Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):507-13. PubMed ID: 8597554 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of group-specific, 16S rRNA-targeted scissor probes for quantitative detection of predominant bacterial populations in dairy cattle rumen. Uyeno Y; Sekiguchi Y; Tajima K; Takenaka A; Kurihara M; Kamagata Y J Appl Microbiol; 2007 Nov; 103(5):1995-2005. PubMed ID: 17953610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]