BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7527574)

  • 1. Glucose metabolism in dog inner medullary collecting ducts.
    Meury L; Noël J; Tejedor A; Sénécal J; Gougoux A; Vinay P
    Ren Physiol Biochem; 1994; 17(5):246-66. PubMed ID: 7527574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycogen metabolism in dog inner medullary collecting ducts.
    Meury L; Sénécal J; Noël J; Vinay P
    Am J Physiol; 1994 Mar; 266(3 Pt 2):F375-83. PubMed ID: 8160785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative effect of ANF and various diuretics on isolated nephron segments.
    Vinay P; Manillier C; Lalonde L; Thibault G; Boulanger Y; Gougoux A; Cantin M
    Kidney Int; 1987 Apr; 31(4):946-55. PubMed ID: 2953924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular pathways of potassium transport in renal inner medullary collecting duct.
    Kone BC; Kikeri D; Zeidel ML; Gullans SR
    Am J Physiol; 1989 Apr; 256(4 Pt 1):C823-30. PubMed ID: 2539729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral glucose transport in distal segments of the dog nephron.
    Vinay P; Sénécal J; Noël J; Chirinian C; Vinay MC; Ammann H; Boulanger Y; Gougoux A; Berteloot A
    Can J Physiol Pharmacol; 1991 Jul; 69(7):964-77. PubMed ID: 1954566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical characterization and osmolytes in papillary collecting ducts from pig and dog kidneys.
    Boulanger Y; Legault P; Tejedor A; Vinay P; Theriault Y
    Can J Physiol Pharmacol; 1988 Oct; 66(10):1282-90. PubMed ID: 3240411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of vanadate on glycolysis, intracellular sodium, and pH in perfused rat hearts.
    Geraldes CF; Castro MM; Sherry AD; Ramasamy R
    Mol Cell Biochem; 1997 May; 170(1-2):53-63. PubMed ID: 9144318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and metabolism of canine proximal tubules, thick ascending limbs, and collecting ducts in suspension.
    Tejedor A; Noel J; Vinay P; Boulanger Y; Gougoux A
    Can J Physiol Pharmacol; 1988 Aug; 66(8):997-1009. PubMed ID: 2972351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate metabolism in human platelets in a low glucose medium under aerobic conditions.
    Niu X; Arthur P; Abas L; Whisson M; Guppy M
    Biochim Biophys Acta; 1996 Oct; 1291(2):97-106. PubMed ID: 8898869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of sorbitol metabolism in renal inner medulla of diabetic rats: regulation by substrate, cosubstrate and products of the aldose reductase reaction.
    Grunewald RW; Weber II; Kinne-Saffran E; Kinne RK
    Biochim Biophys Acta; 1993 Nov; 1225(1):39-47. PubMed ID: 8241288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENERGETICS OF ANAEROBIC SODIUM TRANSPORT BY THE FRESH WATER TURTLE BLADDER.
    KLAHR S; BRICKER NS
    J Gen Physiol; 1965 Mar; 48(4):571-80. PubMed ID: 14324976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism?
    Cohen JJ
    Am J Physiol; 1979 May; 236(5):F423-33. PubMed ID: 220881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin E2 inhibits Na+-K+-ATPase activity in the inner medullary collecting duct.
    Jabs K; Zeidel ML; Silva P
    Am J Physiol; 1989 Sep; 257(3 Pt 2):F424-30. PubMed ID: 2551187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism of reticulocytes: two different sources of energy for Na+K(+)-ATPase activity.
    Kostić MM; Zivković RV
    Cell Biochem Funct; 1994 Jun; 12(2):107-12. PubMed ID: 8044886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP turnover and renal response of dog tubules to pH changes in vitro.
    Manillier C; Vinay P; Lalonde L; Gougoux A
    Am J Physiol; 1986 Nov; 251(5 Pt 2):F919-32. PubMed ID: 3777188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-induced modulation of ATP turnover in dog and rabbit proximal tubules.
    Noël J; Tejedor A; Vinay P; Laprade R
    J Membr Biol; 1992 Jun; 128(3):205-18. PubMed ID: 1323687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification of rat papillary collecting duct cells: functional and metabolic assessment.
    Stokes JB; Grupp C; Kinne RK
    Am J Physiol; 1987 Aug; 253(2 Pt 2):F251-62. PubMed ID: 3303974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between intracellular ATP and the sodium pump activity in dog renal tubules.
    Ammann H; Noël J; Boulanger Y; Vinay P
    Can J Physiol Pharmacol; 1990 Jan; 68(1):57-67. PubMed ID: 2158385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.