These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 7527896)

  • 1. Nucleoid partitioning in Escherichia coli during steady-state growth and upon recovery from chloramphenicol treatment.
    van Helvoort JM; Woldringh CL
    Mol Microbiol; 1994 Aug; 13(4):577-83. PubMed ID: 7527896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused nucleoids resegregate faster than cell elongation in Escherichia coli pbpB(Ts) filaments after release from chloramphenicol inhibition.
    Van Helvoort JMLM; Huls PG; Vischer NOE; Woldringh CL
    Microbiology (Reading); 1998 May; 144 ( Pt 5)():1309-1317. PubMed ID: 9611806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleoid partitioning and the division plane in Escherichia coli.
    Woldringh CL; Zaritsky A; Grover NB
    J Bacteriol; 1994 Oct; 176(19):6030-8. PubMed ID: 7523361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloramphenicol causes fusion of separated nucleoids in Escherichia coli K-12 cells and filaments.
    van Helvoort JM; Kool J; Woldringh CL
    J Bacteriol; 1996 Jul; 178(14):4289-93. PubMed ID: 8763959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleoid condensation and cell division in Escherichia coli MX74T2 ts52 after inhibition of protein synthesis.
    Zusman DR; Carbonell A; Haga JY
    J Bacteriol; 1973 Sep; 115(3):1167-78. PubMed ID: 4580561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning, movement, and positioning of nucleoids in Mycoplasma capricolum.
    Seto S; Miyata M
    J Bacteriol; 1999 Oct; 181(19):6073-80. PubMed ID: 10498720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning.
    Niki H; Hiraga S
    Genes Dev; 1998 Apr; 12(7):1036-45. PubMed ID: 9531540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleoid-independent identification of cell division sites in Escherichia coli.
    Cook WR; Rothfield LI
    J Bacteriol; 1999 Mar; 181(6):1900-5. PubMed ID: 10074085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Underlying regularity in the shapes of nucleoids of Escherichia coli: implications for nucleoid organization and partition.
    Zimmerman SB
    J Struct Biol; 2003 May; 142(2):256-65. PubMed ID: 12713953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli.
    Neeli-Venkata R; Martikainen A; Gupta A; Gonçalves N; Fonseca J; Ribeiro AS
    J Bacteriol; 2016 Jan; 198(6):898-906. PubMed ID: 26728194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localizing cell division in spherical Escherichia coli by nucleoid occlusion.
    Zaritsky A; Woldringh CL
    FEMS Microbiol Lett; 2003 Sep; 226(2):209-14. PubMed ID: 14553913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome.
    Hashimoto M; Ichimura T; Mizoguchi H; Tanaka K; Fujimitsu K; Keyamura K; Ote T; Yamakawa T; Yamazaki Y; Mori H; Katayama T; Kato J
    Mol Microbiol; 2005 Jan; 55(1):137-49. PubMed ID: 15612923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly.
    Sun Q; Margolin W
    J Bacteriol; 2004 Jun; 186(12):3951-9. PubMed ID: 15175309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial filament formation in Bacillus subtilis: induction of nucleoids of increasing length after addition of chloramphenicol to exponential-phase cultures approaching stationary phase.
    Bylund JE; Haines MA; Piggot PJ; Higgins ML
    J Bacteriol; 1993 Apr; 175(7):1886-90. PubMed ID: 7681431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative transitions of isolated Escherichia coli nucleoids: implications for the nucleoid as a cellular phase.
    Zimmerman SB
    J Struct Biol; 2006 Feb; 153(2):160-75. PubMed ID: 16384714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic nucleoid segregation dynamics as a source of the phenotypic variability in E. coli.
    Gelber I; Aranovich A; Feingold M; Fishov I
    Biophys J; 2021 Nov; 120(22):5107-5123. PubMed ID: 34627765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization.
    Yu XC; Margolin W
    Mol Microbiol; 1999 Apr; 32(2):315-26. PubMed ID: 10231488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor.
    Harrington EW; Trun NJ
    J Bacteriol; 1997 Apr; 179(7):2435-9. PubMed ID: 9079934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toroidal nucleoids in Escherichia coli exposed to chloramphenicol.
    Zimmerman SB
    J Struct Biol; 2002 Jun; 138(3):199-206. PubMed ID: 12217658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of FtsZ in coupling of nucleoid separation with septation.
    Tétart F; Albigot R; Conter A; Mulder E; Bouché JP
    Mol Microbiol; 1992 Mar; 6(5):621-7. PubMed ID: 1552861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.