BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7528074)

  • 61. Dopamine-induced protection of striatal neurons against kainate receptor-mediated glutamate cytotoxicity in vitro.
    Amano T; Ujihara H; Matsubayashi H; Sasa M; Yokota T; Tamura Y; Akaike A
    Brain Res; 1994 Aug; 655(1-2):61-9. PubMed ID: 7812790
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Knocking out the glial glutamate transporter GLT-1 reduces glutamate uptake but does not affect hippocampal glutamate dynamics in early simulated ischaemia.
    Hamann M; Rossi DJ; Marie H; Attwell D
    Eur J Neurosci; 2002 Jan; 15(2):308-14. PubMed ID: 11849297
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Guanine nucleotides inhibit NMDA and kainate-induced neurotoxicity in cultured rat hippocampal and neocortical neurons.
    Morciano M; Ortinau S; Zimmermann H
    Neurochem Int; 2004 Jul; 45(1):95-101. PubMed ID: 15082227
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Neurotoxicity of acromelic acid in cultured neurons from rat spinal cord.
    Tsuji K; Nakamura Y; Ogata T; Mitani A; Kataoka K; Shibata T; Ishida M; Shinozaki H
    Neuroscience; 1995 Sep; 68(2):585-91. PubMed ID: 7477968
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Neurokinin release in the rat nucleus of the solitary tract via NMDA and AMPA receptors.
    Colin I; Blondeau C; Baude A
    Neuroscience; 2002; 115(4):1023-33. PubMed ID: 12453476
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A comparison of the effect of halothane on N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated excitatory synaptic transmission in the hippocampus.
    Narimatsu E; Tsai YC; Gerhold TD; Kamath SH; Davies LR; Sokoll MD
    Anesth Analg; 1996 Apr; 82(4):843-7. PubMed ID: 8615508
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inhibition of glutamatergic activation of extracellular signal-regulated protein kinases in hippocampal neurons by the intravenous anesthetic propofol.
    Kozinn J; Mao L; Arora A; Yang L; Fibuch EE; Wang JQ
    Anesthesiology; 2006 Dec; 105(6):1182-91. PubMed ID: 17122581
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evidence that the early loss of membrane protein kinase C is a necessary step in the excitatory amino acid-induced death of primary cortical neurons.
    Durkin JP; Tremblay R; Chakravarthy B; Mealing G; Morley P; Small D; Song D
    J Neurochem; 1997 Apr; 68(4):1400-12. PubMed ID: 9084410
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of excitatory amino acid neurotoxicity in N-methyl-D-aspartate receptor-deficient mouse cortical neuronal cells.
    Tokita Y; Bessho Y; Masu M; Nakamura K; Nakao K; Katsuki M; Nakanishi S
    Eur J Neurosci; 1996 Jan; 8(1):69-78. PubMed ID: 8713451
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Intracellular survival pathways against glutamate receptor agonist excitotoxicity in cultured neurons. Intracellular calcium responses.
    Marini AM; Ueda Y; June CH
    Ann N Y Acad Sci; 1999; 890():421-37. PubMed ID: 10668447
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Glutamate-mediated excitotoxic death of cultured striatal neurons is mediated by non-NMDA receptors.
    Chen Q; Harris C; Brown CS; Howe A; Surmeier DJ; Reiner A
    Exp Neurol; 1995 Dec; 136(2):212-24. PubMed ID: 7498411
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pharmacological characterization of a GluR6 kainate receptor in cultured hippocampal neurons.
    Bleakman D; Ogden AM; Ornstein PL; Hoo K
    Eur J Pharmacol; 1999 Aug; 378(3):331-7. PubMed ID: 10493110
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons.
    Mattson MP; Kumar KN; Wang H; Cheng B; Michaelis EK
    J Neurosci; 1993 Nov; 13(11):4575-88. PubMed ID: 7901348
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Role of glutamate receptors and voltage-dependent calcium channels in glutamate toxicity in energy-compromised cortical neurons.
    Kimura M; Katayama K; Nishizawa Y
    Jpn J Pharmacol; 1999 Aug; 80(4):351-8. PubMed ID: 10496336
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Complestatin is a noncompetitive peptide antagonist of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors: secure blockade of ischemic neuronal death.
    Seo SY; Yun BS; Ryoo IJ; Choi JS; Joo CK; Chang SY; Chung JM; Oh S; Gwag BJ; Yoo ID
    J Pharmacol Exp Ther; 2001 Oct; 299(1):377-84. PubMed ID: 11561102
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Distinct neuroprotective profiles for sigma ligands against N-methyl-D-aspartate (NMDA), and hypoxia-mediated neurotoxicity in neuronal culture toxicity studies.
    Lockhart BP; Soulard P; Benicourt C; Privat A; Junien JL
    Brain Res; 1995 Mar; 675(1-2):110-20. PubMed ID: 7796119
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ionotropic glutamate receptors in isolated horizontal cells of the rabbit retina.
    Blanco R; de la Villa P
    Eur J Neurosci; 1999 Mar; 11(3):867-73. PubMed ID: 10103080
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Differential effects of NBQX on the distal and local toxicity of glutamate agonists administered intra-hippocampally.
    Lees GJ; Leong W
    Brain Res; 1993 Nov; 628(1-2):1-7. PubMed ID: 7508807
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: evidence for the involvement of neurotrophins.
    Rocha M; Martins RA; Linden R
    Brain Res; 1999 May; 827(1-2):79-92. PubMed ID: 10320696
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Brief calcium transients evoked by glutamate receptor agonists in rat dorsal horn neurons: fast kinetics and mechanisms.
    Reichling DB; MacDermott AB
    J Physiol; 1993 Sep; 469():67-88. PubMed ID: 7505825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.