BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7528507)

  • 1. Cytotoxicity and metabolism of 4-methoxy-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine in HCT 116 colon cancer cells.
    Grem JL; Daychild P; Drake J; Geoffroy F; Trepel JB; Pirnia F; Allegra CJ
    Biochem Pharmacol; 1994 Nov; 48(11):2117-26. PubMed ID: 7528507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of phosphoribosylpyrophosphate synthetase by 4-methoxy-(MRPP) and 4-amino-8-(D-ribofuranosylamino) pyrimido[5,4-d]pyrimidine (ARPP).
    Nord LD; Willis RC; Breen TS; Avery TL; Finch RA; Sanghvi YS; Revankar GR; Robins RK
    Biochem Pharmacol; 1989 Oct; 38(20):3543-9. PubMed ID: 2479382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of 5-phosphoribosyl-1-pyrophosphate synthetase by the monophosphate metabolite of 4-amino-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine: a novel mechanism for antitumor activity.
    Fry DW; Boritzki TJ; Jackson RC; Cook PD; Leopold WR
    Mol Pharmacol; 1993 Aug; 44(2):479-85. PubMed ID: 7689145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism and RNA incorporation of cyclopentenyl cytosine in human colorectal cancer cells.
    Yee LK; Allegra CJ; Trepel JB; Grem JL
    Biochem Pharmacol; 1992 Apr; 43(7):1587-99. PubMed ID: 1567480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (6R)-5,10-Dideaza-5,6,7,8-tetrahydrofolic acid effects on nucleotide metabolism in CCRF-CEM human T-lymphoblast leukemia cells.
    Pizzorno G; Moroson BA; Cashmore AR; Beardsley GP
    Cancer Res; 1991 May; 51(9):2291-5. PubMed ID: 1707749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uridylate-trapping sugar analogs in combination with inhibitors of uridylate synthesis de novo and 5-fluorouridine.
    Keppler D; Fauler J; Gasser T; Holstege A; Leube K; Schulz-Holstege C; Weckbecker G
    Adv Enzyme Regul; 1985; 23():61-79. PubMed ID: 2416194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-activity relationship of a pyrimidine receptor in the rat isolated superior cervical ganglion.
    Connolly GP; Harrison PJ
    Br J Pharmacol; 1995 Nov; 116(6):2764-70. PubMed ID: 8591002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potent and specific inhibitors of mammalian phosphoribosylpyrophosphate (PRPP) synthetase.
    Willis RC; Nord LD; Fujitaki JM; Robins RK
    Adv Enzyme Regul; 1989; 28():167-82. PubMed ID: 2560324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitumor and antiviral activity of synthetic alpha- and beta-ribonucleosides of certain substituted pyrimido[5,4-d]pyrimidines: a new synthetic strategy for exocyclic aminonucleosides.
    Sanghvi YS; Larson SB; Matsumoto SS; Nord LD; Smee DF; Willis RC; Avery TL; Robins RK; Revankar GR
    J Med Chem; 1989 Mar; 32(3):629-37. PubMed ID: 2918511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of cytotoxicity with prolonged exposure to fluorouracil in human colon cancer cells.
    Ren Q; Van Groeningen CJ; Hardcastle A; Aherne GW; Geoffroy F; Allegra CJ; Johnston PG; Grem JL
    Oncol Res; 1997; 9(2):77-88. PubMed ID: 9167189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribose-enhanced synthesis of UTP, CTP, and GTP from parent nucleosides in cardiac myocytes.
    Geisbuhler TP; Schwager TL
    J Mol Cell Cardiol; 1998 Apr; 30(4):879-87. PubMed ID: 9602437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine on K562 cellular metabolism and the inhibition of human ribonucleotide reductase and DNA polymerases by its 5'-triphosphate.
    Parker WB; Shaddix SC; Chang CH; White EL; Rose LM; Brockman RW; Shortnacy AT; Montgomery JA; Secrist JA; Bennett LL
    Cancer Res; 1991 May; 51(9):2386-94. PubMed ID: 1707752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical modulation of 5-fluorouracil with or without leucovorin by a low dose of brequinar in MGH-U1 cells.
    Chen TL; Erlichman C
    Cancer Chemother Pharmacol; 1992; 30(5):370-6. PubMed ID: 1380407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the sensitivity of human colon cancer cells to growth inhibition by acivicin achieved through inhibition of nucleic acid precursor salvage by dipyridamole.
    Fischer PH; Pamukcu R; Bittner G; Willson JK
    Cancer Res; 1984 Aug; 44(8):3355-9. PubMed ID: 6744269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salvage capacity of hepatoma 3924A and action of dipyridamole.
    Weber G; Lui MS; Natsumeda Y; Faderan MA
    Adv Enzyme Regul; 1983; 21():53-69. PubMed ID: 6443595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DUP 785 (NSC 368390): schedule-dependency of growth-inhibitory and antipyrimidine effects.
    Schwartsmann G; Peters GJ; Laurensse E; de Waal FC; Loonen AH; Leyva A; Pinedo HM
    Biochem Pharmacol; 1988 Sep; 37(17):3257-66. PubMed ID: 2840910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of purine nucleoside analogs based on multiple biological and biochemical parameters.
    Noujaim MJ; Zombor G; Henderson JF
    Adv Exp Med Biol; 1986; 195 Pt B():165-9. PubMed ID: 2429506
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of uridine triphosphate in the phosphorylation of 1-beta-D-arabinofuranosylcytosine by Ehrlich ascites tumor cells.
    White JC; Hines LH
    Cancer Res; 1987 Apr; 47(7):1820-4. PubMed ID: 3028615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mononucleotide metabolism in the rat brain after transient ischemia.
    Onodera H; Iijima K; Kogure K
    J Neurochem; 1986 Jun; 46(6):1704-10. PubMed ID: 3701329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key role of uridine kinase and uridine phosphorylase in the homeostatic regulation of purine and pyrimidine salvage in brain.
    Balestri F; Barsotti C; Lutzemberger L; Camici M; Ipata PL
    Neurochem Int; 2007 Dec; 51(8):517-23. PubMed ID: 17643556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.