These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 7528522)
1. The dorsal column-medial lemniscal projection of anuran amphibians. Muñoz A; Muñoz M; González A; de Boer-van Huizen R; ten Donkelaar HJ Eur J Morphol; 1994 Aug; 32(2-4):283-7. PubMed ID: 7528522 [TBL] [Abstract][Full Text] [Related]
2. Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis. Muñoz A; Muñoz M; González A; Ten Donkelaar HJ J Comp Neurol; 1995 Dec; 363(2):197-220. PubMed ID: 8642070 [TBL] [Abstract][Full Text] [Related]
3. Primary afferents and second order projections of the trigeminal system in a frog (Rana ridibunda). Muñoz M; Muñoz A; Marin O; González A Eur J Morphol; 1994 Aug; 32(2-4):288-92. PubMed ID: 7803181 [TBL] [Abstract][Full Text] [Related]
4. Spinothalamic projections in amphibians as revealed with anterograde tracing techniques. Muñoz A; Muñoz M; González A; ten Donkelaar HJ Neurosci Lett; 1994 Apr; 171(1-2):81-4. PubMed ID: 8084504 [TBL] [Abstract][Full Text] [Related]
5. Spinal ascending pathways in amphibians: cells of origin and main targets. Muñoz A; Muñoz M; González A; ten Donkelaar HJ J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061 [TBL] [Abstract][Full Text] [Related]
6. Early development of dorsal column-medial lemniscal projections in the clawed toad, Xenopus laevis. Múñoz A; de Boer-Van Huizen R; Bergervoet-Vernooy I; ten Donkelaar HJ Brain Res Dev Brain Res; 1993 Aug; 74(2):291-4. PubMed ID: 7691436 [TBL] [Abstract][Full Text] [Related]
7. Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. Sánchez-Camacho C; Marín O; Ten Donkelaar HJ; González A J Comp Neurol; 2001 May; 434(2):186-208. PubMed ID: 11331524 [TBL] [Abstract][Full Text] [Related]
8. Evidence for an anuran homologue of the mammalian spinocervicothalamic system: an in vitro tract-tracing study in Xenopus laevis. Muñoz A; Muñoz M; Gonzalez A; ten Donkelaar HJ Eur J Neurosci; 1996 Jul; 8(7):1390-400. PubMed ID: 8758946 [TBL] [Abstract][Full Text] [Related]
9. [Electrotonic transmission between primary afferent fibers and the motor neurons of the isolated spinal cord of various representative amphibians]. Shiriaev BI Zh Evol Biokhim Fiziol; 1983; 19(5):500-2. PubMed ID: 6316697 [TBL] [Abstract][Full Text] [Related]
10. Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. Sánchez-Camacho C; Marín O; Smeets WJ; Ten Donkelaar HJ; González A J Comp Neurol; 2001 May; 434(2):209-32. PubMed ID: 11331525 [TBL] [Abstract][Full Text] [Related]
11. Cerebellar connections in Xenopus laevis. An HRP study. Gonzalez A; ten Donkelaar HJ; de Boer-van Huizen R Anat Embryol (Berl); 1984; 169(2):167-76. PubMed ID: 6742456 [TBL] [Abstract][Full Text] [Related]
12. Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. López JM; Morona R; González A J Chem Neuroanat; 2010 Dec; 40(4):325-38. PubMed ID: 20887782 [TBL] [Abstract][Full Text] [Related]
13. Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. Belekhova MG; Zharskaja VD; Khachunts AS; Gaidaenko GV; Tumanova NL J Hirnforsch; 1985; 26(2):127-52. PubMed ID: 2410486 [TBL] [Abstract][Full Text] [Related]
14. Early development of rubrospinal and cerebellorubral projections in Xenopus laevis. ten Donkelaar HJ; de Boer-van Huizen R; van der Linden JA Brain Res Dev Brain Res; 1991 Feb; 58(2):297-300. PubMed ID: 2029772 [TBL] [Abstract][Full Text] [Related]
15. Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. Marín O; González A; Smeets WJ J Comp Neurol; 1997 Mar; 380(1):23-50. PubMed ID: 9073081 [TBL] [Abstract][Full Text] [Related]
16. [Efferent neurons of the auditory center in the midbrain of the frog Rana ridibunda]. Bibikov NG; Soroka SK; Zharskaia VD Zh Evol Biokhim Fiziol; 1986; 22(5):460-5. PubMed ID: 2431564 [TBL] [Abstract][Full Text] [Related]
17. Trigeminal primary afferent projections to the spinal cord of the frog, Rana ridibunda. González A; Muñoz A; Muñoz M J Morphol; 1993 Aug; 217(2):137-46. PubMed ID: 8371275 [TBL] [Abstract][Full Text] [Related]
18. Synaptic connections between primary afferents and motoneurons in the spinal cord of anuran larvae. Shupliakov OV Acta Biol Hung; 1988; 39(2-3):127-34. PubMed ID: 2855771 [TBL] [Abstract][Full Text] [Related]
19. Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. Sánchez-Camacho C; Marín O; López JM; Moreno N; Smeets WJ; ten Donkelaar HJ; González A Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):325-30. PubMed ID: 11922982 [TBL] [Abstract][Full Text] [Related]
20. Nucleus laminaris of the torus semicircularis: projection to spinal cord in reptiles. Butler AB; Bruce LL Neurosci Lett; 1981 Sep; 25(3):221-5. PubMed ID: 6270598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]