These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 7528522)
21. Development of brainstem and cerebellar projections to the diencephalon with notes on thalamocortical projections: studies in the North American opossum. Martin GF; Cabana T; Hazlett JC; Ho R; Waltzer R J Comp Neurol; 1987 Jun; 260(2):186-200. PubMed ID: 3038968 [TBL] [Abstract][Full Text] [Related]
22. Avian somatosensory system: II. Ascending projections of the dorsal column and external cuneate nuclei in the pigeon. Wild JM J Comp Neurol; 1989 Sep; 287(1):1-18. PubMed ID: 2794122 [TBL] [Abstract][Full Text] [Related]
23. Comparative analysis of the vasotocinergic and mesotocinergic cells and fibers in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. González A; Smeets WJ J Comp Neurol; 1992 Jan; 315(1):53-73. PubMed ID: 1541723 [TBL] [Abstract][Full Text] [Related]
24. The trochlear nucleus of the frog Rana ridibunda: localization, morphology and ultrastructure of identified motoneurons. Muñoz M; González A Brain Res Bull; 1995; 36(5):433-41. PubMed ID: 7536105 [TBL] [Abstract][Full Text] [Related]
25. Two thalamo-telencephalic pathways in a urodele, Triturus alpestris. Wicht H; Himstedt W Neurosci Lett; 1986 Jul; 68(1):90-4. PubMed ID: 3014400 [TBL] [Abstract][Full Text] [Related]
26. Regeneration of ascending spinal axons in goldfish. Hanna GF; Nawar NN; Sharma SC Brain Res; 1998 Apr; 791(1-2):235-45. PubMed ID: 9593911 [TBL] [Abstract][Full Text] [Related]
27. Effects on transmission through the spinocervical tract evoked from the dorsal columns and the dorsal column nuclei. Brown AG; Martin HF J Physiol; 1972 Jul; 224(1):34P-35P. PubMed ID: 4339137 [No Abstract] [Full Text] [Related]
28. Hodological characterization of the medial amygdala in anuran amphibians. Moreno N; González A J Comp Neurol; 2003 Nov; 466(3):389-408. PubMed ID: 14556296 [TBL] [Abstract][Full Text] [Related]
29. Development of spinocerebellar afferents in the clawed toad, Xenopus laevis. van der Linden JA; ten Donkelaar HJ; de Boer-van Huizen R J Comp Neurol; 1988 Nov; 277(1):41-52. PubMed ID: 3198795 [TBL] [Abstract][Full Text] [Related]
30. [Ultrastructural analysis of the frog sensorimotor synapse physiologically identified and labeled with horseradish peroxidase]. Chmykhova NM; Shapovalov AI; Shiriaev BI; Komissarchik IaIu; Snigirevskaia ES Dokl Akad Nauk SSSR; 1987; 293(1):250-2. PubMed ID: 3032551 [No Abstract] [Full Text] [Related]
31. Central amygdala in anuran amphibians: neurochemical organization and connectivity. Moreno N; González A J Comp Neurol; 2005 Aug; 489(1):69-91. PubMed ID: 15977165 [TBL] [Abstract][Full Text] [Related]
32. The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections. Henkel CK; Martin GF J Comp Neurol; 1977 Mar; 172(2):321-48. PubMed ID: 65367 [TBL] [Abstract][Full Text] [Related]
33. Influence of descending forebrain projections on processing of acoustic signals and audiomotor integration in the anuran midbrain. Endepols H; Walkowiak W Eur J Morphol; 1999 Apr; 37(2-3):182-4. PubMed ID: 10342453 [TBL] [Abstract][Full Text] [Related]
34. Projections ascending from the spinal cord to the brain in petromyzontid and myxinoid agnathans. Ronan M; Northcutt RG J Comp Neurol; 1990 Jan; 291(4):491-508. PubMed ID: 2329187 [TBL] [Abstract][Full Text] [Related]
35. Hodological characterization of the septum in anuran amphibians: I. Afferent connections. Roden K; Endepols H; Walkowiak W J Comp Neurol; 2005 Mar; 483(4):415-36. PubMed ID: 15700270 [TBL] [Abstract][Full Text] [Related]
36. The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii. An HRP study. Hlavacek M; Tahar M; Libouban S; Szabo T J Hirnforsch; 1984; 25(6):603-15. PubMed ID: 6526990 [TBL] [Abstract][Full Text] [Related]
37. Afferent connections of the cerebellum in various types of reptiles. Bangma GC; ten Donkelaar H J Comp Neurol; 1982 May; 207(3):255-73. PubMed ID: 7107986 [TBL] [Abstract][Full Text] [Related]
38. Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: morphological substrates for parallel processing in the electrosensory system. Carr CE; Maler L; Heiligenberg W; Sas E J Comp Neurol; 1981 Dec; 203(4):649-70. PubMed ID: 7035506 [TBL] [Abstract][Full Text] [Related]
39. Afferents to the midbrain auditory center in the bullfrog, rana catesbeiana. Wilczynski W J Comp Neurol; 1981 May; 198(3):421-33. PubMed ID: 6972387 [TBL] [Abstract][Full Text] [Related]
40. Comparative analysis of the regenerative capacity of caudal spinal cord in larvae of serveral Anuran amphibian species. Filoni S; Bosco L Acta Embryol Morphol Exp (Halocynthia Assoc); 1981 Dec-1982 Jan; 2(3):199-226. PubMed ID: 6983200 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]