BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 7528615)

  • 1. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal collateral damage in porcine corneas after photoablation with free electron laser.
    Bende T; Walker R; Jean B
    J Refract Surg; 1995; 11(2):129-36. PubMed ID: 7634143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light.
    Shanyfelt LM; Dickrell PL; Edelhauser HF; Hahn DW
    Lasers Surg Med; 2008 Sep; 40(7):483-93. PubMed ID: 18727026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Photoablation with the Er:YAG laser in ocular tissues].
    Bende T; Seiler T; Wollensak J
    Fortschr Ophthalmol; 1991; 88(1):12-6. PubMed ID: 2045019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness.
    Bachmann W; Jean B; Bende T; Wohlrab M; Thiel HJ
    Ger J Ophthalmol; 1993 Nov; 2(6):400-3. PubMed ID: 8312823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photoablation of the cornea with pulsed 2790 nm ErCr:YSGG laser irradiation. Basic studies].
    Lubatschowski H; Kermani O; Asshauer T
    Ophthalmologe; 1993 Apr; 90(2):183-90. PubMed ID: 8490304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threshold and ablation efficiency studies of microsecond ablation of gelatin under water.
    Sathyam US; Shearin A; Chasteney EA; Prahl SA
    Lasers Surg Med; 1996; 19(4):397-406. PubMed ID: 8982998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute ultrastructural changes of cornea after excimer laser ablation.
    Ozler SA; Liaw LH; Neev J; Raney D; Berns MW
    Invest Ophthalmol Vis Sci; 1992 Mar; 33(3):540-6. PubMed ID: 1544782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photofragmentation of lens nuclei using the Er: YAG laser: preliminary report of an in vitro study.
    Wetzel W; Brinkmann R; Koop N; Schröer F; Birngruber R
    Ger J Ophthalmol; 1996 Sep; 5(5):281-4. PubMed ID: 8911950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncontact photoacoustic spectroscopy during photoablation with a 193-nm excimer laser.
    Jean B; Bende T; Matallana M
    Ger J Ophthalmol; 1993 Nov; 2(6):404-8. PubMed ID: 8312824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.
    Mrochen M; Schelling U; Wuellner C; Donitzky C
    J Cataract Refract Surg; 2009 Feb; 35(2):363-73. PubMed ID: 19185256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Silicone impression procedure. Principles for determining ablation and healing parameters in vitro and in vivo].
    Bachmann W; Jean B; Bende T; Seiler T; Csuzda I; Thiel HJ
    Ophthalmologe; 1993 Apr; 90(2):178-82. PubMed ID: 8490303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects.
    Mackanos MA; Kozub JA; Hachey DL; Joos KM; Ellis DL; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1885-99. PubMed ID: 15815102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quantitative analysis of corneal excisions using argon fluoride excimer laser (193 nanometers)].
    Aron-Rosa D; Gross M; Maden A; Ramirez S; Timsit JC
    Bull Soc Ophtalmol Fr; 1989; 89(8-9):1051-5. PubMed ID: 2620423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.