These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 7528615)

  • 1. Photoablation of gelatin with the free-electron laser between 2.7 and 6.7 microns.
    Jean B; Bende T
    J Refract Corneal Surg; 1994; 10(4):433-8. PubMed ID: 7528615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal collateral damage in porcine corneas after photoablation with free electron laser.
    Bende T; Walker R; Jean B
    J Refract Surg; 1995; 11(2):129-36. PubMed ID: 7634143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light.
    Shanyfelt LM; Dickrell PL; Edelhauser HF; Hahn DW
    Lasers Surg Med; 2008 Sep; 40(7):483-93. PubMed ID: 18727026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Photoablation with the Er:YAG laser in ocular tissues].
    Bende T; Seiler T; Wollensak J
    Fortschr Ophthalmol; 1991; 88(1):12-6. PubMed ID: 2045019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicone replica technique and automatic confocal topometry for determination of corneal surface roughness.
    Bachmann W; Jean B; Bende T; Wohlrab M; Thiel HJ
    Ger J Ophthalmol; 1993 Nov; 2(6):400-3. PubMed ID: 8312823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photoablation of the cornea with pulsed 2790 nm ErCr:YSGG laser irradiation. Basic studies].
    Lubatschowski H; Kermani O; Asshauer T
    Ophthalmologe; 1993 Apr; 90(2):183-90. PubMed ID: 8490304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threshold and ablation efficiency studies of microsecond ablation of gelatin under water.
    Sathyam US; Shearin A; Chasteney EA; Prahl SA
    Lasers Surg Med; 1996; 19(4):397-406. PubMed ID: 8982998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute ultrastructural changes of cornea after excimer laser ablation.
    Ozler SA; Liaw LH; Neev J; Raney D; Berns MW
    Invest Ophthalmol Vis Sci; 1992 Mar; 33(3):540-6. PubMed ID: 1544782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photofragmentation of lens nuclei using the Er: YAG laser: preliminary report of an in vitro study.
    Wetzel W; Brinkmann R; Koop N; Schröer F; Birngruber R
    Ger J Ophthalmol; 1996 Sep; 5(5):281-4. PubMed ID: 8911950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a lambda = 9.3-microm TEA CO(2) laser.
    Fried D; Featherstone JD; Le CQ; Fan K
    Lasers Surg Med; 2006 Oct; 38(9):837-45. PubMed ID: 17044095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncontact photoacoustic spectroscopy during photoablation with a 193-nm excimer laser.
    Jean B; Bende T; Matallana M
    Ger J Ophthalmol; 1993 Nov; 2(6):404-8. PubMed ID: 8312824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.
    Mrochen M; Schelling U; Wuellner C; Donitzky C
    J Cataract Refract Surg; 2009 Feb; 35(2):363-73. PubMed ID: 19185256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Silicone impression procedure. Principles for determining ablation and healing parameters in vitro and in vivo].
    Bachmann W; Jean B; Bende T; Seiler T; Csuzda I; Thiel HJ
    Ophthalmologe; 1993 Apr; 90(2):178-82. PubMed ID: 8490303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects.
    Mackanos MA; Kozub JA; Hachey DL; Joos KM; Ellis DL; Jansen ED
    Phys Med Biol; 2005 Apr; 50(8):1885-99. PubMed ID: 15815102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology.
    Youn JI; Sweet P; Peavy GM; Venugopalan V
    Lasers Surg Med; 2006 Mar; 38(3):218-28. PubMed ID: 16453331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Quantitative analysis of corneal excisions using argon fluoride excimer laser (193 nanometers)].
    Aron-Rosa D; Gross M; Maden A; Ramirez S; Timsit JC
    Bull Soc Ophtalmol Fr; 1989; 89(8-9):1051-5. PubMed ID: 2620423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.