These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7528782)

  • 1. A damped oscillation in the intramembranous charge movement and calcium release flux of frog skeletal muscle fibers.
    Shirokova N; Pizarro G; Ríos E
    J Gen Physiol; 1994 Sep; 104(3):449-76. PubMed ID: 7528782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfering with calcium release suppresses I gamma, the "hump" component of intramembranous charge movement in skeletal muscle.
    Csernoch L; Pizarro G; Uribe I; Rodríguez M; Ríos E
    J Gen Physiol; 1991 May; 97(5):845-84. PubMed ID: 1713947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle.
    Pizarro G; Csernoch L; Uribe I; Rodríguez M; Ríos E
    J Gen Physiol; 1991 May; 97(5):913-47. PubMed ID: 1650812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties and roles of an intramembranous charge mobilized at high voltages in frog skeletal muscle.
    Shirokova N; González A; Ma J; Shirokov R; Ríos E
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):385-400. PubMed ID: 7473205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2.
    Brum G; Rios E
    J Physiol; 1987 Jun; 387():489-517. PubMed ID: 3116215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling.
    Brum G; Fitts R; Pizarro G; Ríos E
    J Physiol; 1988 Apr; 398():475-505. PubMed ID: 3260626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the calcium buffer EGTA on the "hump" component of charge movement in skeletal muscle.
    García J; Pizarro G; Ríos E; Stefani E
    J Gen Physiol; 1991 May; 97(5):885-96. PubMed ID: 1650811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihydropyridine-sensitive ion currents and charge movement in vesicles derived from frog skeletal muscle plasma membranes.
    Camacho J; Carapia A; Calvo J; García MC; Sánchez JA
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):177-86. PubMed ID: 10517810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramembrane charge movement and calcium release in frog skeletal muscle.
    Melzer W; Schneider MF; Simon BJ; Szucs G
    J Physiol; 1986 Apr; 373():481-511. PubMed ID: 3489092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perchlorate enhances transmission in skeletal muscle excitation-contraction coupling.
    González A; Ríos E
    J Gen Physiol; 1993 Sep; 102(3):373-421. PubMed ID: 8245817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane charge moved at contraction thresholds in skeletal muscle fibres.
    Horowicz P; Schneider MF
    J Physiol; 1981 May; 314():595-633. PubMed ID: 6975815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A slow component of intramembranous charge movement during sarcoplasmic reticulum calcium release in frog cut muscle fibers.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1996 Jan; 107(1):79-101. PubMed ID: 8741732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres.
    Hui CS
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):869-85. PubMed ID: 9596806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes.
    Shirokov R; Levis R; Shirokova N; Ríos E
    J Gen Physiol; 1992 Jun; 99(6):863-95. PubMed ID: 1322450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres.
    Brum G; Ríos E; Stéfani E
    J Physiol; 1988 Apr; 398():441-73. PubMed ID: 2455801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramembranous charge movement in frog cut twitch fibers mounted in a double vaseline-gap chamber.
    Hui CS; Chandler WK
    J Gen Physiol; 1990 Aug; 96(2):257-97. PubMed ID: 2212983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):341-56. PubMed ID: 8782100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers.
    Jong DS; Pape PC; Chandler WK
    J Gen Physiol; 1995 Oct; 106(4):659-704. PubMed ID: 8576702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium inactivation of calcium release in frog cut muscle fibers that contain millimolar EGTA or Fura-2.
    Jong DS; Pape PC; Baylor SM; Chandler WK
    J Gen Physiol; 1995 Aug; 106(2):337-88. PubMed ID: 8537819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous measurements of Ca2+ currents and intracellular Ca2+ concentrations in single skeletal muscle fibers of the frog.
    Brum G; Stefani E; Rios E
    Can J Physiol Pharmacol; 1987 Apr; 65(4):681-5. PubMed ID: 2440542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.