These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7528976)

  • 1. Heterotetramer formation and charybdotoxin sensitivity of two K+ channels cloned from smooth muscle.
    Russell SN; Overturf KE; Horowitz B
    Am J Physiol; 1994 Dec; 267(6 Pt 1):C1729-33. PubMed ID: 7528976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
    Goldstein SA; Pheasant DJ; Miller C
    Neuron; 1994 Jun; 12(6):1377-88. PubMed ID: 7516689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor.
    MacKinnon R; Heginbotham L; Abramson T
    Neuron; 1990 Dec; 5(6):767-71. PubMed ID: 1702643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channels share common structural features.
    MacKinnon R; Reinhart PH; White MM
    Neuron; 1988 Dec; 1(10):997-1001. PubMed ID: 2483094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and characterization of a Kv1.5 delayed rectifier K+ channel from vascular and visceral smooth muscles.
    Overturf KE; Russell SN; Carl A; Vogalis F; Hart PJ; Hume JR; Sanders KM; Horowitz B
    Am J Physiol; 1994 Nov; 267(5 Pt 1):C1231-8. PubMed ID: 7977686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of a toxin from the scorpion Tityus serrulatus with a cloned K+ channel from squid (sqKv1A).
    Ellis KC; Tenenholz TC; Jerng H; Hayhurst M; Dudlak CS; Gilly WF; Blaustein MP; Weber DJ
    Biochemistry; 2001 May; 40(20):5942-53. PubMed ID: 11352729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charybdotoxin and its effects on potassium channels.
    Garcia ML; Knaus HG; Munujos P; Slaughter RS; Kaczorowski GJ
    Am J Physiol; 1995 Jul; 269(1 Pt 1):C1-10. PubMed ID: 7543240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin.
    Meera P; Wallner M; Toro L
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5562-7. PubMed ID: 10792058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injection of a K+ channel (Kv1.3) cRNA in fertilized eggs leads to functional expression in cultured myotomal muscle cells from Xenopus embryos.
    Honoré E; Guillemare E; Lesage F; Barhanin J; Lazdunski M
    FEBS Lett; 1994 Jul; 348(3):259-62. PubMed ID: 7518400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition for block of a Ca2(+)-activated K+ channel by charybdotoxin and tetraethylammonium.
    Miller C
    Neuron; 1988 Dec; 1(10):1003-6. PubMed ID: 2483092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-linking of charybdotoxin to high-conductance calcium-activated potassium channels: identification of the covalently modified toxin residue.
    Munujos P; Knaus HG; Kaczorowski GJ; Garcia ML
    Biochemistry; 1995 Aug; 34(34):10771-6. PubMed ID: 7545007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels.
    Stocker M; Stühmer W; Wittka R; Wang X; Müller R; Ferrus A; Pongs O
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8903-7. PubMed ID: 1701056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Block of maurotoxin and charybdotoxin on human intermediate-conductance calcium-activated potassium channels (hIKCa1).
    Visan V; Sabatier JM; Grissmer S
    Toxicon; 2004 Jun; 43(8):973-80. PubMed ID: 15208030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BeKm-1 is a HERG-specific toxin that shares the structure with ChTx but the mechanism of action with ErgTx1.
    Zhang M; Korolkova YV; Liu J; Jiang M; Grishin EV; Tseng GN
    Biophys J; 2003 May; 84(5):3022-36. PubMed ID: 12719233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels.
    Knaus HG; Garcia-Calvo M; Kaczorowski GJ; Garcia ML
    J Biol Chem; 1994 Feb; 269(6):3921-4. PubMed ID: 7508434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis, and functional expression of a gene for charybdotoxin, a peptide blocker of K+ channels.
    Park CS; Hausdorff SF; Miller C
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2046-50. PubMed ID: 1706515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of K+ channel blockers and cromakalim (BRL 34915) on the mechanical activity of guinea pig detrusor smooth muscle.
    Grant TL; Zuzack JS
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1158-64. PubMed ID: 1722252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of voltage-gated K+ channel pharmacology.
    Pongs O
    Trends Pharmacol Sci; 1992 Sep; 13(9):359-65. PubMed ID: 1382336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines.
    Grissmer S; Nguyen AN; Aiyar J; Hanson DC; Mather RJ; Gutman GA; Karmilowicz MJ; Auperin DD; Chandy KG
    Mol Pharmacol; 1994 Jun; 45(6):1227-34. PubMed ID: 7517498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.