These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7528976)

  • 21. Effects of channel modulators on cloned large-conductance calcium-activated potassium channels.
    Gribkoff VK; Lum-Ragan JT; Boissard CG; Post-Munson DJ; Meanwell NA; Starrett JE; Kozlowski ES; Romine JL; Trojnacki JT; Mckay MC; Zhong J; Dworetzky SI
    Mol Pharmacol; 1996 Jul; 50(1):206-17. PubMed ID: 8700114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrostatic distance geometry in a K+ channel vestibule.
    Stocker M; Miller C
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9509-13. PubMed ID: 7524078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A point mutation in a Shaker K+ channel changes its charybdotoxin binding site from low to high affinity.
    Goldstein SA; Miller C
    Biophys J; 1992 Apr; 62(1):5-7. PubMed ID: 1376173
    [No Abstract]   [Full Text] [Related]  

  • 24. Large conducting potassium channel reconstituted from airway smooth muscle.
    Savaria D; Lanoue C; Cadieux A; Rousseau E
    Am J Physiol; 1992 Mar; 262(3 Pt 1):L327-36. PubMed ID: 1372487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of charybdotoxin block of a voltage-gated K+ channel.
    Goldstein SA; Miller C
    Biophys J; 1993 Oct; 65(4):1613-9. PubMed ID: 7506068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Charybdotoxin-sensitive K(Ca) channel is not involved in glucose-induced electrical activity in pancreatic beta-cells.
    Kukuljan M; Goncalves AA; Atwater I
    J Membr Biol; 1991 Jan; 119(2):187-95. PubMed ID: 1710672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A point mutation in the maxi-K clone dSlo forms a high affinity site for charybdotoxin.
    Myers MP; Stampe P
    Neuropharmacology; 2000; 39(1):11-20. PubMed ID: 10665815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes.
    Sands SB; Lewis RS; Cahalan MD
    J Gen Physiol; 1989 Jun; 93(6):1061-74. PubMed ID: 2475579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes.
    Attali B; Romey G; Honoré E; Schmid-Alliana A; Mattéi MG; Lesage F; Ricard P; Barhanin J; Lazdunski M
    J Biol Chem; 1992 Apr; 267(12):8650-7. PubMed ID: 1373731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different types of K+ channel current are generated by different levels of a single mRNA.
    Honoré E; Attali B; Romey G; Lesage F; Barhanin J; Lazdunski M
    EMBO J; 1992 Jul; 11(7):2465-71. PubMed ID: 1378391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers.
    Pérez G; Lagrutta A; Adelman JP; Toro L
    Biophys J; 1994 Apr; 66(4):1022-7. PubMed ID: 7518702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and expression of a Kv1.2 class delayed rectifier K+ channel from canine colonic smooth muscle.
    Hart PJ; Overturf KE; Russell SN; Carl A; Hume JR; Sanders KM; Horowitz B
    Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9659-63. PubMed ID: 8415758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Ca(2+)-activated K+ channels in electrical activity of longitudinal and circular muscle layers of canine colon.
    Carl A; Bayguinov O; Shuttleworth CW; Ward SM; Sanders KM
    Am J Physiol; 1995 Mar; 268(3 Pt 1):C619-27. PubMed ID: 7534981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel.
    Park CS; Miller C
    Neuron; 1992 Aug; 9(2):307-13. PubMed ID: 1379820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries.
    Quayle JM; McCarron JG; Brayden JE; Nelson MT
    Am J Physiol; 1993 Nov; 265(5 Pt 1):C1363-70. PubMed ID: 7694496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of charybdotoxin-sensitive K+ channel in the relaxation of bovine tracheal smooth muscle by glyceryl trinitrate and sodium nitroprusside.
    Hamaguchi M; Ishibashi T; Imai S
    J Pharmacol Exp Ther; 1992 Jul; 262(1):263-70. PubMed ID: 1378093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel.
    Naranjo D; Miller C
    Neuron; 1996 Jan; 16(1):123-30. PubMed ID: 8562075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels.
    Thompson J; Begenisich T
    Biophys J; 2000 May; 78(5):2382-91. PubMed ID: 10777734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular identification of a component of delayed rectifier current in gastrointestinal smooth muscles.
    Schmalz F; Kinsella J; Koh SD; Vogalis F; Schneider A; Flynn ER; Kenyon JL; Horowitz B
    Am J Physiol; 1998 May; 274(5):G901-11. PubMed ID: 9612272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the subunit stoichiometry of a voltage-activated potassium channel.
    MacKinnon R
    Nature; 1991 Mar; 350(6315):232-5. PubMed ID: 1706481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.