These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7529225)

  • 1. Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: determination of the first two steps and specific inhibitory effect of methimazole.
    Tomasi I; Artaud I; Bertheau Y; Mansuy D
    J Bacteriol; 1995 Jan; 177(2):307-11. PubMed ID: 7529225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxylation reaction catalyzed by the Burkholderia cepacia AC1100 bacterial strain. Involvement of the chlorophenol-4-monooxygenase.
    Martin G; Dijols S; Capeillere-Blandin C; Artaud I
    Eur J Biochem; 1999 Apr; 261(2):533-9. PubMed ID: 10215866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100.
    Xun L
    J Bacteriol; 1996 May; 178(9):2645-9. PubMed ID: 8626333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of Halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia.
    Karns JS; Kilbane JJ; Duttagupta S; Chakrabarty AM
    Appl Environ Microbiol; 1983 Nov; 46(5):1176-81. PubMed ID: 6651297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus.
    Apajalahti JH; Salkinoja-Salonen MS
    J Bacteriol; 1987 Feb; 169(2):675-81. PubMed ID: 3804972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100.
    Martin-Le Garrec G; Artaud I; Capeillère-Blandin C
    Biochim Biophys Acta; 2001 Jun; 1547(2):288-301. PubMed ID: 11410285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706.
    Bae HS; Lee JM; Lee ST
    FEMS Microbiol Lett; 1996 Nov; 145(1):125-9. PubMed ID: 8931337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the microsomal N-hydroxylation of 2-amino-6-nitrotoluene by a metabolite of methimazole.
    Kedderis GL; Rickert DE
    Biochem Biophys Res Commun; 1983 Jun; 113(2):433-8. PubMed ID: 6870866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:flavin adenine dinucleotide oxidoreductase (TftC) of Burkholderia cepacia AC1100.
    Gisi MR; Xun L
    J Bacteriol; 2003 May; 185(9):2786-92. PubMed ID: 12700257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a meta-cleavage pathway for metabolism of phenoxyacetic acid and phenol in Pseudomonas cepacia AC1100.
    Ghadi SC; Sangodkar UM
    Biochem Biophys Res Commun; 1994 Oct; 204(2):983-93. PubMed ID: 7526858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC1100.
    Karns JS; Duttagupta S; Chakrabarty AM
    Appl Environ Microbiol; 1983 Nov; 46(5):1182-6. PubMed ID: 6651298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100.
    Danganan CE; Ye RW; Daubaras DL; Xun L; Chakrabarty AM
    Appl Environ Microbiol; 1994 Nov; 60(11):4100-6. PubMed ID: 7527626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes for 2,4,5-trichlorophenoxyacetic acid metabolism in Burkholderia cepacia AC1100: characterization of the tftC and tftD genes and locations of the tft operons on multiple replicons.
    Hübner A; Danganan CE; Xun L; Chakrabarty AM; Hendrickson W
    Appl Environ Microbiol; 1998 Jun; 64(6):2086-93. PubMed ID: 9603818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida F1.
    Spain JC; Zylstra GJ; Blake CK; Gibson DT
    Appl Environ Microbiol; 1989 Oct; 55(10):2648-52. PubMed ID: 2604403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species.
    Beadle CA; Smith AR
    Eur J Biochem; 1982 Apr; 123(2):323-32. PubMed ID: 7075592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2.
    Hofrichter M; Bublitz F; Fritsche W
    J Basic Microbiol; 1994; 34(3):163-72. PubMed ID: 8071803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial biodegradation of 2,4,5-trichlorophenoxyacetic acid and chlorophenols.
    Karns JS; Kilbane JJ; Chatterjee DK; Chakrabarty AM
    Basic Life Sci; 1984; 28():3-21. PubMed ID: 6704076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel pathway for conversion of chlorohydroxyquinol to maleylacetate in Burkholderia cepacia AC1100.
    Zaborina O; Daubaras DL; Zago A; Xun L; Saido K; Klem T; Nikolic D; Chakrabarty AM
    J Bacteriol; 1998 Sep; 180(17):4667-75. PubMed ID: 9721310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1.
    Wieser M; Wagner B; Eberspächer J; Lingens F
    J Bacteriol; 1997 Jan; 179(1):202-8. PubMed ID: 8981999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia.
    Kilbane JJ; Chatterjee DK; Karns JS; Kellogg ST; Chakrabarty AM
    Appl Environ Microbiol; 1982 Jul; 44(1):72-8. PubMed ID: 7125648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.