These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7529441)

  • 41. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein.
    McMahon HT; Ushkaryov YA; Edelmann L; Link E; Binz T; Niemann H; Jahn R; Südhof TC
    Nature; 1993 Jul; 364(6435):346-9. PubMed ID: 8332193
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A molecular basis for learning and memory.
    Kosower EM
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3292-6. PubMed ID: 4343962
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Synaptic vesicle proteins and psychiatric disorders].
    Rapp S; Thome J
    Nervenarzt; 2004 Jul; 75(7):628-32. PubMed ID: 15293007
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synaptic vesicle recycling in cultured cerebellar granule cells: role of vesicular acidification and refilling.
    Cousin MA; Nicholls DG
    J Neurochem; 1997 Nov; 69(5):1927-35. PubMed ID: 9349537
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synapsin I, a neuron-specific phosphoprotein interacting with small synaptic vesicles and F-actin.
    Benfenati F; Valtorta F; Bähler M; Greengard P
    Cell Biol Int Rep; 1989 Dec; 13(12):1007-21. PubMed ID: 2517594
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synaptic vesicle proteins and neuronal plasticity in adrenergic neurons.
    Hou XE; Dahlström A
    Neurochem Res; 2000 Oct; 25(9-10):1275-300. PubMed ID: 11059802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vesicle docking in regulated exocytosis.
    Verhage M; Sørensen JB
    Traffic; 2008 Sep; 9(9):1414-24. PubMed ID: 18445120
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The molecular machinery for secretion is conserved from yeast to neurons.
    Bennett MK; Scheller RH
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2559-63. PubMed ID: 8096639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila.
    Broadie K; Prokop A; Bellen HJ; O'Kane CJ; Schulze KL; Sweeney ST
    Neuron; 1995 Sep; 15(3):663-73. PubMed ID: 7546745
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion.
    Basu J; Betz A; Brose N; Rosenmund C
    J Neurosci; 2007 Jan; 27(5):1200-10. PubMed ID: 17267576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurotransmission: harnessing fusion machinery at the synapse.
    Söllner T; Rothman JE
    Trends Neurosci; 1994 Aug; 17(8):344-8. PubMed ID: 7526506
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complexin Mutants Reveal Partial Segregation between Recycling Pathways That Drive Evoked and Spontaneous Neurotransmission.
    Sabeva N; Cho RW; Vasin A; Gonzalez A; Littleton JT; Bykhovskaia M
    J Neurosci; 2017 Jan; 37(2):383-396. PubMed ID: 28077717
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synaptic vesicle endocytosis: calcium works overtime in the nerve terminal.
    Cousin MA
    Mol Neurobiol; 2000; 22(1-3):115-28. PubMed ID: 11414275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synaptic vesicle exocytosis: molecules and models.
    O'Connor V; Augustine GJ; Betz H
    Cell; 1994 Mar; 76(5):785-7. PubMed ID: 7907278
    [No Abstract]   [Full Text] [Related]  

  • 56. Synaptic vesicle generation from central nerve terminal endosomes.
    Kokotos AC; Cousin MA
    Traffic; 2015 Mar; 16(3):229-40. PubMed ID: 25346420
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SNAP receptors implicated in vesicle targeting and fusion.
    Söllner T; Whiteheart SW; Brunner M; Erdjument-Bromage H; Geromanos S; Tempst P; Rothman JE
    Nature; 1993 Mar; 362(6418):318-24. PubMed ID: 8455717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane proteins involved in targetted membrane fusion.
    Hurtley SM
    Trends Biochem Sci; 1993 Dec; 18(12):453-5. PubMed ID: 8108854
    [No Abstract]   [Full Text] [Related]  

  • 59. Proteins involved in synaptic vesicle docking and fusion.
    Burns ME; Beushausen SA; Chin GJ; Tang D; DeBello WM; Dresbach T; O'Connor V; Schweizer FE; Wang SS; Whiteheart SW
    Cold Spring Harb Symp Quant Biol; 1995; 60():337-48. PubMed ID: 8824407
    [No Abstract]   [Full Text] [Related]  

  • 60. Association of Rab3A with synaptic vesicles at late stages of the secretory pathway.
    Matteoli M; Takei K; Cameron R; Hurlbut P; Johnston PA; Südhof TC; Jahn R; De Camilli P
    J Cell Biol; 1991 Nov; 115(3):625-33. PubMed ID: 1655810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.