These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 7529497)

  • 1. Mutation of potential phosphorylation sites in the recombinant R domain of the cystic fibrosis transmembrane conductance regulator has significant effects on domain conformation.
    Dulhanty AM; Chang XB; Riordan JR
    Biochem Biophys Res Commun; 1995 Jan; 206(1):207-14. PubMed ID: 7529497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of a cAMP-dependent protein kinase phosphorylation site in the C-terminal region of human endothelial actin-binding protein.
    Jay D; García EJ; Lara JE; Medina MA; de la Luz Ibarra M
    Arch Biochem Biophys; 2000 May; 377(1):80-4. PubMed ID: 10775444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of CFTR activity by its phosphorylated R domain.
    Winter MC; Welsh MJ
    Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H; Rath A; Glibowicka M; Deber CM
    Biochemistry; 2007 Jun; 46(24):7099-106. PubMed ID: 17516627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY; Cardarelli L; Therien AG; Deber CM
    Biochemistry; 2004 Jun; 43(25):8077-83. PubMed ID: 15209503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Akt activation by growth factors is a multiple-step process: the role of the PH domain.
    Bellacosa A; Chan TO; Ahmed NN; Datta K; Malstrom S; Stokoe D; McCormick F; Feng J; Tsichlis P
    Oncogene; 1998 Jul; 17(3):313-25. PubMed ID: 9690513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.
    Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serine/threonine/tyrosine protein kinase from Arabidopsis thaliana is dependent on serine residues for its activity.
    Reddy MM; Rajasekharan R
    Arch Biochem Biophys; 2007 Apr; 460(1):122-8. PubMed ID: 17291444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site mutations define the pathway for the cooperative activation of cAMP-dependent protein kinase.
    Herberg FW; Taylor SS; Dostmann WR
    Biochemistry; 1996 Mar; 35(9):2934-42. PubMed ID: 8608131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Ser424 as the protein kinase A phosphorylation site in CTP synthetase from Saccharomyces cerevisiae.
    Park TS; Ostrander DB; Pappas A; Carman GM
    Biochemistry; 1999 Jul; 38(27):8839-48. PubMed ID: 10393561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a leucine zipper coiled coil stabilized 1.4 kcal mol-1 by phosphorylation of a serine in the e position.
    Szilák L; Moitra J; Vinson C
    Protein Sci; 1997 Jun; 6(6):1273-83. PubMed ID: 9194187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser52 and Ser56 within a predicted alpha-helix-turn-alpha-helix-motif.
    Schubert U; Henklein P; Boldyreff B; Wingender E; Strebel K; Porstmann T
    J Mol Biol; 1994 Feb; 236(1):16-25. PubMed ID: 8107101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation by cAMP-dependent protein kinase causes a conformational change in the R domain of the cystic fibrosis transmembrane conductance regulator.
    Dulhanty AM; Riordan JR
    Biochemistry; 1994 Apr; 33(13):4072-9. PubMed ID: 7511414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation.
    Seibert FS; Tabcharani JA; Chang XB; Dulhanty AM; Mathews C; Hanrahan JW; Riordan JR
    J Biol Chem; 1995 Feb; 270(5):2158-62. PubMed ID: 7530719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cystic fibrosis transmembrane conductance regulator. Nucleotide binding to a synthetic peptide segment from the second predicted nucleotide binding fold.
    Ko YH; Thomas PJ; Pedersen PL
    J Biol Chem; 1994 May; 269(20):14584-8. PubMed ID: 7514174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring.
    Townsend RR; Lipniunas PH; Tulk BM; Verkman AS
    Protein Sci; 1996 Sep; 5(9):1865-73. PubMed ID: 8880910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution.
    Ostedgaard LS; Baldursson O; Vermeer DW; Welsh MJ; Robertson AD
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5657-62. PubMed ID: 10792060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH; Kaufmann C; Cook TA; Archdeacon P
    J Biol Chem; 1994 May; 269(21):14865-8. PubMed ID: 7515047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.