BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7529555)

  • 1. Localization of Beckwith-Wiedemann and rhabdoid tumor chromosome rearrangements to a defined interval in chromosome band 11p15.5.
    Sait SN; Nowak NJ; Singh-Kahlon P; Weksberg R; Squire J; Shows TB; Higgins MJ
    Genes Chromosomes Cancer; 1994 Oct; 11(2):97-105. PubMed ID: 7529555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple genetic loci within 11p15 defined by Beckwith-Wiedemann syndrome rearrangement breakpoints and subchromosomal transferable fragments.
    Hoovers JM; Kalikin LM; Johnson LA; Alders M; Redeker B; Law DJ; Bliek J; Steenman M; Benedict M; Wiegant J; Lengauer C; Taillon-Miller P; Schlessinger D; Edwards MC; Elledge SJ; Ivens A; Westerveld A; Little P; Mannens M; Feinberg AP
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12456-60. PubMed ID: 8618920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical mapping of 3 candidate tumor suppressor genes relative to Beckwith-Wiedemann syndrome associated chromosomal breakpoints at 11p15.3.
    Redeker E; Alders M; Hoovers JM; Richard CW; Westerveld A; Mannens M
    Cytogenet Cell Genet; 1995; 68(3-4):222-5. PubMed ID: 7842740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted.
    Weksberg R; Teshima I; Williams BR; Greenberg CR; Pueschel SM; Chernos JE; Fowlow SB; Hoyme E; Anderson IJ; Whiteman DA
    Hum Mol Genet; 1993 May; 2(5):549-56. PubMed ID: 8518793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel human homologue of yeast nucleosome assembly protein, 65 kb centromeric to the p57KIP2 gene, is biallelically expressed in fetal and adult tissues.
    Hu RJ; Lee MP; Johnson LA; Feinberg AP
    Hum Mol Genet; 1996 Nov; 5(11):1743-8. PubMed ID: 8923002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional cloning of genes involved in the Beckwith-Wiedemann syndrome, hemihypertrophy, and associated childhood tumors.
    Mannens M; Alders M; Redeker B; Bliek J; Steenman M; Wiesmeyer C; de Meulemeester M; Ryan A; Kalikin L; Voûte T; De Kraker J; Hoovers J; Slater R; Feinberg A; Little P; Westerveld A
    Med Pediatr Oncol; 1996 Nov; 27(5):490-4. PubMed ID: 8827079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal rearrangements in the 11p15 imprinted region: 17 new 11p15.5 duplications with associated phenotypes and putative functional consequences.
    Heide S; Chantot-Bastaraud S; Keren B; Harbison MD; Azzi S; Rossignol S; Michot C; Lackmy-Port Lys M; Demeer B; Heinrichs C; Newfield RS; Sarda P; Van Maldergem L; Trifard V; Giabicani E; Siffroi JP; Le Bouc Y; Netchine I; Brioude F
    J Med Genet; 2018 Mar; 55(3):205-213. PubMed ID: 29223973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constitutional BWS-related t(11;16) chromosome translocation occurring in the same region of chromosome 16 implicated in Wilms' tumors.
    Newsham I; Kindler-Röhrborn A; Daub D; Cavenee W
    Genes Chromosomes Cancer; 1995 Jan; 12(1):1-7. PubMed ID: 7534105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seven megabase yeast artificial chromosome contig at region 11p15: identification of a yeast artificial chromosome spanning the breakpoint of a chromosomal translocation found in a case of Beckwith-Wiedemann syndrome.
    Negrini M; Sabbioni S; Ohta M; Veronese ML; Rattan S; Junien C; Croce CM
    Cancer Res; 1995 Jul; 55(13):2904-9. PubMed ID: 7796419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parental imprinting of human chromosome region 11p15.3-pter involved in the Beckwith-Wiedemann syndrome and various human neoplasia.
    Mannens M; Hoovers JM; Redeker E; Verjaal M; Feinberg AP; Little P; Boavida M; Coad N; Steenman M; Bliek J
    Eur J Hum Genet; 1994; 2(1):3-23. PubMed ID: 7913866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allelic methylation of H19 and IGF2 in the Beckwith-Wiedemann syndrome.
    Reik W; Brown KW; Slatter RE; Sartori P; Elliott M; Maher ER
    Hum Mol Genet; 1994 Aug; 3(8):1297-301. PubMed ID: 7987305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A radiation hybrid map of the distal short arm of human chromosome 11, containing the Beckwith-Wiedemann and associated embryonal tumor disease loci.
    Richard CW; Boehnke M; Berg DJ; Lichy JH; Meeker TC; Hauser E; Myers RM; Cox DR
    Am J Hum Genet; 1993 May; 52(5):915-21. PubMed ID: 8387721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements.
    Lee MP; Hu RJ; Johnson LA; Feinberg AP
    Nat Genet; 1997 Feb; 15(2):181-5. PubMed ID: 9020845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated physical map of 210 markers assigned to the short arm of human chromosome 11.
    Redeker E; Hoovers JM; Alders M; van Moorsel CJ; Ivens AC; Gregory S; Kalikin L; Bliek J; de Galan L; van den Bogaard R
    Genomics; 1994 Jun; 21(3):538-50. PubMed ID: 7959730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 1-Mb physical map and PAC contig of the imprinted domain in 11p15.5 that contains TAPA1 and the BWSCR1/WT2 region.
    Reid LH; Davies C; Cooper PR; Crider-Miller SJ; Sait SN; Nowak NJ; Evans G; Stanbridge EJ; deJong P; Shows TB; Weissman BE; Higgins MJ
    Genomics; 1997 Aug; 43(3):366-75. PubMed ID: 9268640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fine-structure deletion map of human chromosome 11p: analysis of J1 series hybrids.
    Glaser T; Housman D; Lewis WH; Gerhard D; Jones C
    Somat Cell Mol Genet; 1989 Nov; 15(6):477-501. PubMed ID: 2595451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibroadenoma in Beckwith-Wiedemann syndrome with paternal uniparental disomy of chromosome 11p15.5.
    Takama Y; Kubota A; Nakayama M; Higashimoto K; Jozaki K; Soejima H
    Pediatr Int; 2014 Dec; 56(6):931-934. PubMed ID: 25521982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular biology of Beckwith-Wiedemann syndrome.
    Weksberg R; Squire JA
    Med Pediatr Oncol; 1996 Nov; 27(5):462-9. PubMed ID: 8827075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome.
    Horike S; Mitsuya K; Meguro M; Kotobuki N; Kashiwagi A; Notsu T; Schulz TC; Shirayoshi Y; Oshimura M
    Hum Mol Genet; 2000 Sep; 9(14):2075-83. PubMed ID: 10958646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations of H19 imprinting and IGF2 replication timing are infrequent in Beckwith-Wiedemann syndrome.
    Squire JA; Li M; Perlikowski S; Fei YL; Bayani J; Zhang ZM; Weksberg R
    Genomics; 2000 May; 65(3):234-42. PubMed ID: 10857747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.