These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 7529585)

  • 1. Parallel helix bundles and ion channels: molecular modeling via simulated annealing and restrained molecular dynamics.
    Kerr ID; Sankararamakrishnan R; Smart OS; Sansom MS
    Biophys J; 1994 Oct; 67(4):1501-15. PubMed ID: 7529585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling packing interactions in parallel helix bundles: pentameric bundles of nicotinic receptor M2 helices.
    Sankararamakrishnan R; Sansom MS
    Biochim Biophys Acta; 1995 Nov; 1239(2):122-32. PubMed ID: 7488617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of water within models of ion channels.
    Breed J; Sankararamakrishnan R; Kerr ID; Sansom MS
    Biophys J; 1996 Apr; 70(4):1643-61. PubMed ID: 8785323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: a molecular dynamics study.
    Sankararamakrishnan R; Sansom MS
    FEBS Lett; 1995 Dec; 377(3):377-82. PubMed ID: 8549759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Packing interactions of Aib-containing helices: molecular modeling of parallel dimers of simple hydrophobic helices and of alamethicin.
    Breed J; Kerr ID; Sankararamakrishnan R; Sansom MS
    Biopolymers; 1995 Jun; 35(6):639-55. PubMed ID: 7766829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural features of isolated M2 helices of nicotinic receptors. Simulated annealing via molecular dynamics studies.
    Sankararamakrishnan R; Sansom MS
    Biophys Chem; 1995 Aug; 55(3):215-30. PubMed ID: 7626742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method.
    Tikhonov DB; Zhorov BS
    Biophys J; 1998 Jan; 74(1):242-55. PubMed ID: 9449326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seven-helix bundles: molecular modeling via restrained molecular dynamics.
    Sansom MS; Son HS; Sankararamakrishnan R; Kerr ID; Breed J
    Biophys J; 1995 Apr; 68(4):1295-310. PubMed ID: 7787019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alamethicin channels - modelling via restrained molecular dynamics simulations.
    Breed J; Biggin PC; Kerr ID; Smart OS; Sansom MS
    Biochim Biophys Acta; 1997 Apr; 1325(2):235-49. PubMed ID: 9168149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular modelling of Staphylococcal delta-toxin ion channels by restrained molecular dynamics.
    Kerr ID; Doak DG; Sankararamakrishnan R; Breed J; Sansom MS
    Protein Eng; 1996 Feb; 9(2):161-71. PubMed ID: 9005437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.
    Sansom MS; Adcock C; Smith GR
    J Struct Biol; 1998; 121(2):246-62. PubMed ID: 9615441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatics and the ion selectivity of ligand-gated channels.
    Adcock C; Smith GR; Sansom MS
    Biophys J; 1998 Sep; 75(3):1211-22. PubMed ID: 9726923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations.
    Guy HR
    Biophys J; 1984 Jan; 45(1):249-61. PubMed ID: 6324907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation of a synthetic ion channel.
    Zhong Q; Jiang Q; Moore PB; Newns DM; Klein ML
    Biophys J; 1998 Jan; 74(1):3-10. PubMed ID: 9449304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors.
    Oiki S; Madison V; Montal M
    Proteins; 1990; 8(3):226-36. PubMed ID: 2177892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study.
    Xu Y; Barrantes FJ; Luo X; Chen K; Shen J; Jiang H
    J Am Chem Soc; 2005 Feb; 127(4):1291-9. PubMed ID: 15669869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophilic surface maps of channel-forming peptides: analysis of amphipathic helices.
    Kerr ID; Sansom MS
    Eur Biophys J; 1993; 22(4):269-77. PubMed ID: 7504619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dielectric properties of water within model transbilayer pores.
    Sansom MS; Smith GR; Adcock C; Biggin PC
    Biophys J; 1997 Nov; 73(5):2404-15. PubMed ID: 9370434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of serine and threonine sidechains in ion channels: a modelling study.
    Sansom MS
    Eur Biophys J; 1992; 21(4):281-98. PubMed ID: 1385107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics.
    Sankararamakrishnan R; Adcock C; Sansom MS
    Biophys J; 1996 Oct; 71(4):1659-71. PubMed ID: 8889144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.