BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 7529751)

  • 1. 1H and 31P NMR spectroscopy of phosphorylated model peptides.
    Hoffmann R; Reichert I; Wachs WO; Zeppezauer M; Kalbitzer HR
    Int J Pept Protein Res; 1994 Sep; 44(3):193-8. PubMed ID: 7529751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides Gly-Gly-X-Ala at pressures between 0.1 and 200 MPa.
    Arnold MR; Kremer W; Lüdemann HD; Kalbitzer HR
    Biophys Chem; 2002 May; 96(2-3):129-40. PubMed ID: 12034435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering of phosphorylated amino acid residues in neurofilament proteins as revealed by 31P NMR.
    Zimmerman UJ; Schlaepfer WW
    Biochemistry; 1986 Jun; 25(12):3533-6. PubMed ID: 3087415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 31P nuclear magnetic resonance and chemical studies of the phosphorus residues in bovine milk xanthine oxidase.
    Davis MD; Edmondson DE; Müller F
    Eur J Biochem; 1984 Dec; 145(2):237-43. PubMed ID: 6548706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible implications of serine and tyrosine residues and intermolecular interactions on the appearance of silk I structure of Bombyx mori silk fibroin-derived synthetic peptides: high-resolution 13C cross-polarization/magic-angle spinning NMR study.
    Asakura T; Ohgo K; Ishida T; Taddei P; Monti P; Kishore R
    Biomacromolecules; 2005; 6(1):468-74. PubMed ID: 15638554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine-specific dephosphorylation-phosphorylation with alkaline phosphatases and epidermal growth factor receptor kinase as evidenced by 31P NMR spectroscopy.
    Takahashi K; Shimidzu M; Shindo H; Kawamoto T; Nishi M; Matsumoto U; Taniguchi S
    J Biochem; 1987 May; 101(5):1107-14. PubMed ID: 2820950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorus-31 nuclear magnetic resonance studies of the two phosphoserine residues of hen egg white ovalbumin.
    Vogel HJ; Bridger WA
    Biochemistry; 1982 Nov; 21(23):5825-31. PubMed ID: 6295445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient solid phase synthesis of mixed Thr(P)-, Ser(P)- and Tyr(P)-containing phosphopeptides by "global" "phosphite-triester" phosphorylation.
    Perich JW
    Int J Pept Protein Res; 1992 Aug; 40(2):134-40. PubMed ID: 1280250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synthesis and use of pp60src-related peptides and phosphopeptides as substrates for enzymatic phosphorylation studies.
    Perich JW; Meggio F; Valerio RM; Johns RB; Pinna LA; Reynolds EC
    Bioorg Med Chem; 1993 Nov; 1(5):381-8. PubMed ID: 7521748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct effects of phosphorylation on the preferred backbone conformation of peptides: a nuclear magnetic resonance study.
    Tholey A; Lindemann A; Kinzel V; Reed J
    Biophys J; 1999 Jan; 76(1 Pt 1):76-87. PubMed ID: 9876124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of phosphotyrosine-containing peptides and their use as substrates for protein tyrosine phosphatases.
    Ottinger EA; Shekels LL; Bernlohr DA; Barany G
    Biochemistry; 1993 Apr; 32(16):4354-61. PubMed ID: 7682846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-equilibrium and heme-ligand alteration in a high-potential monoheme cytochrome (cytochrome c554) from Achromobacter cycloclastes, a denitrifying organism.
    Saraiva LM; Liu MY; Payne WJ; Legall J; Moura JJ; Moura I
    Eur J Biochem; 1990 Apr; 189(2):333-41. PubMed ID: 2159881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the cardiac troponin I phosphorylation domain by 31P nuclear magnetic resonance spectroscopy.
    Jaquet K; Korte K; Schnackerz K; Vyska K; Heilmeyer LM
    Biochemistry; 1993 Dec; 32(50):13873-8. PubMed ID: 8268162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N(omega)-phosphoarginine phosphatase (17 kDa) and alkaline phosphatase as protein arginine phosphatases.
    Kumon A; Kodama H; Kondo M; Yokoi F; Hiraishi H
    J Biochem; 1996 Apr; 119(4):719-24. PubMed ID: 8743574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of O-phosphoserine- and O-phosphothreonine-containing peptides.
    Perich JW
    Methods Enzymol; 1991; 201():225-33. PubMed ID: 1943766
    [No Abstract]   [Full Text] [Related]  

  • 16. A 1H-NMR study of the casein phosphopeptide alpha s1-casein(59-79).
    Huq NL; Cross KJ; Reynolds EC
    Biochim Biophys Acta; 1995 Mar; 1247(2):201-8. PubMed ID: 7696309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of phosphorylation in determining the backbone dynamics of the serine/threonine-proline motif and Pin1 substrate recognition.
    Schutkowski M; Bernhardt A; Zhou XZ; Shen M; Reimer U; Rahfeld JU; Lu KP; Fischer G
    Biochemistry; 1998 Apr; 37(16):5566-75. PubMed ID: 9548941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active-site serine phosphate and histidine residues of phosphoglucomutase: pH titration studies monitored by 1H and 31P NMR spectroscopy.
    Rhyu GI; Ray WJ; Markley JL
    Biochemistry; 1985 Aug; 24(18):4746-53. PubMed ID: 2934085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of acid dissociation constants of peptide side-chain functional groups by two-dimensional NMR.
    Rabenstein DL; Hari SP; Kaerner A
    Anal Chem; 1997 Nov; 69(21):4310-6. PubMed ID: 9360489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR spectroscopy of hydroxyl protons in aqueous solutions of peptides and proteins.
    Liepinsh E; Otting G; Wüthrich K
    J Biomol NMR; 1992 Sep; 2(5):447-65. PubMed ID: 1384851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.