These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 7529855)
1. DNA ploidy in prostate cancer: potential measurement as a surrogate endpoint biomarker. Lieber MM J Cell Biochem Suppl; 1994; 19():246-8. PubMed ID: 7529855 [TBL] [Abstract][Full Text] [Related]
2. Sensitive detection of chromosome copy number aberrations in prostate cancer by fluorescence in situ hybridization. Visakorpi T; Hyytinen E; Kallioniemi A; Isola J; Kallioniemi OP Am J Pathol; 1994 Sep; 145(3):624-30. PubMed ID: 8080044 [TBL] [Abstract][Full Text] [Related]
3. Potential markers of prostate cancer aggressiveness detected by fluorescence in situ hybridization in needle biopsies. Takahashi S; Qian J; Brown JA; Alcaraz A; Bostwick DG; Lieber MM; Jenkins RB Cancer Res; 1994 Jul; 54(13):3574-9. PubMed ID: 8012984 [TBL] [Abstract][Full Text] [Related]
4. Prostatic intraepithelial neoplasia (PIN) and other prostatic lesions as risk factors and surrogate endpoints for cancer chemoprevention trials. Bostwick DG; Aquilina JW J Cell Biochem Suppl; 1996; 25():156-64. PubMed ID: 9027613 [TBL] [Abstract][Full Text] [Related]
5. Aneusomies of chromosomes 8 and Y detected by fluorescence in situ hybridization are prognostic markers for pathological stage C (pt3N0M0) prostate carcinoma. Takahashi S; Alcaraz A; Brown JA; Borell TJ; Herath JF; Bergstralh EJ; Lieber MM; Jenkins RB Clin Cancer Res; 1996 Jan; 2(1):137-45. PubMed ID: 9816100 [TBL] [Abstract][Full Text] [Related]
6. Interphase cytogenetics of prostatic tumor progression: specific chromosomal abnormalities are involved in metastasis to the bone. Alers JC; Krijtenburg PJ; Rosenberg C; Hop WC; Verkerk AM; Schröder FH; van der Kwast TH; Bosman FT; van Dekken H Lab Invest; 1997 Nov; 77(5):437-48. PubMed ID: 9389787 [TBL] [Abstract][Full Text] [Related]
8. Numerical abnormalities of chromosome 7 in human prostate cancer detected by fluorescence in situ hybridization (FISH) on paraffin-embedded tissue sections with centromere-specific DNA probes. Zitzelsberger H; Szücs S; Weier HU; Lehmann L; Braselmann H; Enders S; Schilling A; Breul J; Höfler H; Bauchinger M J Pathol; 1994 Apr; 172(4):325-35. PubMed ID: 8207613 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer. Huang SF; Xiao S; Renshaw AA; Loughlin KR; Hudson TJ; Fletcher JA Am J Pathol; 1996 Nov; 149(5):1565-73. PubMed ID: 8909246 [TBL] [Abstract][Full Text] [Related]
10. Aneusomy of chromosomes 7, 8, and 17 and amplification of HER-2/neu and epidermal growth factor receptor in Gleason score 7 prostate carcinoma: a differential fluorescent in situ hybridization study of Gleason pattern 3 and 4 using tissue microarray. Skacel M; Ormsby AH; Pettay JD; Tsiftsakis EK; Liou LS; Klein EA; Levin HS; Zippe CD; Tubbs RR Hum Pathol; 2001 Dec; 32(12):1392-7. PubMed ID: 11774175 [TBL] [Abstract][Full Text] [Related]
11. The most promising surrogate endpoint biomarkers for screening candidate chemopreventive compounds for prostatic adenocarcinoma in short-term phase II clinical trials. Bostwick DG; Burke HB; Wheeler TM; Chung LW; Bookstein R; Pretlow TG; Nagle RB; Montironi R; Lieber MM; Veltri RW J Cell Biochem Suppl; 1994; 19():283-9. PubMed ID: 7529857 [TBL] [Abstract][Full Text] [Related]
12. Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization. Qian J; Jenkins RB; Bostwick DG Mod Pathol; 1997 Nov; 10(11):1113-9. PubMed ID: 9388062 [TBL] [Abstract][Full Text] [Related]
13. Numerical aberrations of chromosomes 8, 9, 11, and 17 in squamous cell carcinoma of the pharynx and larynx: a fluorescence in situ hybridization and DNA flow cytometric analysis of 50 cases. Hardisson D; Alvarez-Marcos C; Salas-Bustamante A; Alonso-Guervós M; Sastre N; Sampedro A Oral Oncol; 2004 Apr; 40(4):409-17. PubMed ID: 14969820 [TBL] [Abstract][Full Text] [Related]
14. DNA ploidy and proliferation heterogeneity in human prostate cancers. Shankey TV; Jin JK; Dougherty S; Flanigan RC; Graham S; Pyle JM Cytometry; 1995 Sep; 21(1):30-9. PubMed ID: 8529468 [TBL] [Abstract][Full Text] [Related]
15. [Prostate cancers and potential precancerous conditions: DNA cytometric investigations and interphase cytogenetics]. Baretton G; Vogt T; Valina C; Schneiderbanger K; Löhrs U Verh Dtsch Ges Pathol; 1993; 77():86-92. PubMed ID: 7511309 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Macoska JA; Trybus TM; Sakr WA; Wolf MC; Benson PD; Powell IJ; Pontes JE Cancer Res; 1994 Jul; 54(14):3824-30. PubMed ID: 8033102 [TBL] [Abstract][Full Text] [Related]
17. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Jenkins RB; Qian J; Lieber MM; Bostwick DG Cancer Res; 1997 Feb; 57(3):524-31. PubMed ID: 9012485 [TBL] [Abstract][Full Text] [Related]
18. Assessment of chromosomal trisomies in prostate cancer using fluorescent in situ hybridization. Mark HF; Feldman D; Das S; Samy M; Sun CL; Mark S Exp Mol Pathol; 1999 Oct; 67(2):109-17. PubMed ID: 10527762 [TBL] [Abstract][Full Text] [Related]