These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7530073)

  • 21. Adaptive integration in the visual cortex by depressing recurrent cortical circuits.
    van Rossum MC; van der Meer MA; Xiao D; Oram MW
    Neural Comput; 2008 Jul; 20(7):1847-72. PubMed ID: 18336081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of abstract decision encoding in the monkey prefrontal cortex, the presupplementary, and cingulate motor areas.
    Merten K; Nieder A
    J Neurophysiol; 2013 Jul; 110(1):19-32. PubMed ID: 23576697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic 'blindness' following lesions of nonvisual cortex in the monkey.
    Nakamura RK; Mishkin M
    Exp Brain Res; 1986; 63(1):173-84. PubMed ID: 3732441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organization of local horizontal functional interactions between neurons in the inferior temporal cortex of macaque monkeys.
    Tamura H; Mori Y; Kaneko H
    J Neurophysiol; 2014 Jun; 111(12):2589-602. PubMed ID: 24671542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repetition suppression in monkey inferotemporal cortex: relation to behavioral priming.
    McMahon DB; Olson CR
    J Neurophysiol; 2007 May; 97(5):3532-43. PubMed ID: 17344370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processes of visual recognition in monkeys and their neuronal correlates in the visual cortex: the influence of a blocker of M-cholinoreceptors.
    Dudkin KN; Kruchinin VK; Chueva IV
    Neurosci Behav Physiol; 1994; 24(2):223-8. PubMed ID: 8065563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics of the impulse activity of neurons of the neocortex of monkeys in a visual recognition task after brief oxygen deprivation.
    Dudkin KN; Kruchinin VK; Chueva IV; Samoilov MO
    Neurosci Behav Physiol; 1996; 26(2):182-8. PubMed ID: 8782222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Participation of cholinergic structures of the prefrontal and inferotemporal cortex in the processes of visual recognition in monkeys.
    Dudkin KN; Kruchinin VK; Chueva IV
    Neurosci Behav Physiol; 1994; 24(4):341-50. PubMed ID: 7808642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuronal mechanisms for the perception of ambiguous stimuli.
    Parker AJ; Krug K
    Curr Opin Neurobiol; 2003 Aug; 13(4):433-9. PubMed ID: 12965290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K; Igaki S; Funahashi S
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general mechanism for decision-making in the human brain?
    Rorie AE; Newsome WT
    Trends Cogn Sci; 2005 Feb; 9(2):41-3. PubMed ID: 15668095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Teams on the same wavelength perform better: Inter-brain phase synchronization constitutes a neural substrate for social facilitation.
    Szymanski C; Pesquita A; Brennan AA; Perdikis D; Enns JT; Brick TR; Müller V; Lindenberger U
    Neuroimage; 2017 May; 152():425-436. PubMed ID: 28284802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Correlation of cutaneo-galvanic and voluntary reactions during recognition of emotional facial expressions].
    Sidorova OA; Kulikov MA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(2):309-18. PubMed ID: 3716598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time.
    Grammont F; Riehle A
    Biol Cybern; 2003 May; 88(5):360-73. PubMed ID: 12750898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Color sensitivity of cells responsive to complex stimuli in the temporal cortex.
    Edwards R; Xiao D; Keysers C; Földiák P; Perrett D
    J Neurophysiol; 2003 Aug; 90(2):1245-56. PubMed ID: 12904507
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extraction of percept-related induced local field potential during spontaneously reversing perception.
    Wang Z; Logothetis NK; Liang H
    Neural Netw; 2009; 22(5-6):720-7. PubMed ID: 19608383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical information flow during flexible sensorimotor decisions.
    Siegel M; Buschman TJ; Miller EK
    Science; 2015 Jun; 348(6241):1352-5. PubMed ID: 26089513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural variability in premotor cortex is modulated by trial history and predicts behavioral performance.
    Marcos E; Pani P; Brunamonti E; Deco G; Ferraina S; Verschure P
    Neuron; 2013 Apr; 78(2):249-55. PubMed ID: 23622062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal activity and its links with the perception of multi-stable figures.
    Parker AJ; Krug K; Cumming BG
    Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1053-62. PubMed ID: 12217173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.