These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7530081)

  • 21. Organization of subcortical pathways for sensory projections to the limbic cortex. I. Subcortical projections to the medial limbic cortex in the rat.
    Thompson SM; Robertson RT
    J Comp Neurol; 1987 Nov; 265(2):175-88. PubMed ID: 3320108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. I. Recording studies.
    Mehlman ML; Winter SS; Valerio S; Taube JS
    J Neurophysiol; 2019 Feb; 121(2):350-370. PubMed ID: 30427767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The spatial organization of the cortical and subcortical afferent projections of the neostriatum in the dog].
    Chivileva OG; Gorbachevskaia AI
    Morfologiia; 1997; 112(4):36-42. PubMed ID: 9424230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat.
    Hoover WB; Vertes RP
    Brain Struct Funct; 2007 Sep; 212(2):149-79. PubMed ID: 17717690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Differences in the sensory support of the anterior and posterior sections of the limbic cortex of the rat].
    Akopian EV; Zagorul'ko TM
    Zh Evol Biokhim Fiziol; 1988; 24(3):396-403. PubMed ID: 2459867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organization of cortical and subcortical projections to the feline insular visual area, IVA.
    Norita M; Hicks TP; Benedek G; Katoh Y
    J Hirnforsch; 1991; 32(1):119-34. PubMed ID: 1725781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial organization of cortical and subcortical afferent projections of the neostriatum in dogs.
    Chivileva OG; Gorbachevskaya AI
    Neurosci Behav Physiol; 1998; 28(5):478-85. PubMed ID: 9809284
    [No Abstract]   [Full Text] [Related]  

  • 28. [Retrograde horseradish peroxidase- and fluorochrome-labelled thalamic sources of afferent projections into the parietal associative cerebral cortex of the cat].
    Maĭskiĭ VA; Serkov FN
    Fiziol Zh (1978); 1986; 32(6):722-32. PubMed ID: 3545915
    [No Abstract]   [Full Text] [Related]  

  • 29. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers.
    Gabbott PL; Warner TA; Jays PR; Salway P; Busby SJ
    J Comp Neurol; 2005 Nov; 492(2):145-77. PubMed ID: 16196030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the cerebral cortex and striatum in emotional motor response.
    Saper CB
    Prog Brain Res; 1996; 107():537-50. PubMed ID: 8782541
    [No Abstract]   [Full Text] [Related]  

  • 31. Thalamic connections with limbic cortex. I. Thalamocortical projections.
    Robertson RT; Kaitz SS
    J Comp Neurol; 1981 Jan; 195(3):501-25. PubMed ID: 7204659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The spatial organization of the cortical afferent projections in the cat nucleus accumbens].
    Chivileva OG
    Fiziol Zh Im I M Sechenova; 1994 Jan; 80(1):94-101. PubMed ID: 7522775
    [No Abstract]   [Full Text] [Related]  

  • 33. Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat.
    Cheatwood JL; Corwin JV; Reep RL
    Brain Res; 2005 Mar; 1036(1-2):90-100. PubMed ID: 15725405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efferent connections of the caudate nucleus, including cortical projections of the striatum and other basal ganglia: an autoradiographic and horseradish peroxidase investigation in the cat.
    Royce GJ; Laine EJ
    J Comp Neurol; 1984 Jun; 226(1):28-49. PubMed ID: 6736295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Organization of the pallidal projections of the rostromedial tegmental nucleus in the dog brain].
    Gorbachevskaya AI
    Morfologiia; 2014; 146(5):24-8. PubMed ID: 25823285
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input.
    Kunishio K; Haber SN
    J Comp Neurol; 1994 Dec; 350(3):337-56. PubMed ID: 7533796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Spatial organisation of afferent inputs of the limbic cortex in rats and cats].
    Makarov FN; Varlamova TI; Granstrem EE
    Ross Fiziol Zh Im I M Sechenova; 1997; 83(1-2):146-50. PubMed ID: 13677001
    [No Abstract]   [Full Text] [Related]  

  • 38. [The structural organization and neurochemical mechanisms of the participation of the nucleus accumbens in the interaction of the limbic and motor systems and in the regulation of motor behavior].
    Shapovalova KB; Gorbachevskaia AI; Saul'skaia NB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(2):226-76. PubMed ID: 1329379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The neuronal organization of the limbic (cingulo-)-visceral reflex arc].
    Baklavadzhian OG; Nersesian LB; Avetisian EA; Avetisian IN; Arshakian AV; Bagdasarian KG; Eganova VS; Pogosian NL
    Usp Fiziol Nauk; 2000; 31(4):11-23. PubMed ID: 11094794
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of the involvement of the striopallidum and pedunculopontine tegmental nucleus in the organization of adaptive behavior.
    Gorbachevskaya AI; Chivileva OG
    Neurosci Behav Physiol; 2007 Oct; 37(8):835-42. PubMed ID: 17922249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.