BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7530209)

  • 1. Is cyclic AMP involved in excitatory amino acid-evoked adenosine release from rat cortical slices?
    Craig CG; Temple SD; White TD
    Eur J Pharmacol; 1994 Sep; 269(1):79-85. PubMed ID: 7530209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-methyl-D-aspartate- and non-N-methyl-D-aspartate-evoked adenosine release from rat cortical slices: distinct purinergic sources and mechanisms of release.
    Craig CG; White TD
    J Neurochem; 1993 Mar; 60(3):1073-80. PubMed ID: 7679722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of excitatory amino acid receptors in K+- and glutamate-evoked release of endogenous adenosine from rat cortical slices.
    Hoehn K; White TD
    J Neurochem; 1990 Jan; 54(1):256-65. PubMed ID: 1967143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forskolin and phosphodiesterase inhibitors release adenosine but inhibit morphine-evoked release of adenosine from spinal cord synaptosomes.
    Nicholson D; White TD; Sawynok J
    Can J Physiol Pharmacol; 1991 Jun; 69(6):877-85. PubMed ID: 1717120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus.
    Suvarna NU; O'Donnell JM
    J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-level N-methyl-D-aspartate receptor activation provides a purinergic inhibitory threshold against further N-methyl-D-aspartate-mediated neurotransmission in the cortex.
    Craig CG; White TD
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1278-84. PubMed ID: 1312166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase.
    Chetkovich DM; Sweatt JD
    J Neurochem; 1993 Nov; 61(5):1933-42. PubMed ID: 7901336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA receptor-mediated stimulation of rat cerebellar nitric oxide formation is modulated by cyclic AMP.
    Toms NJ; Roberts PJ
    Eur J Pharmacol; 1994 Jan; 266(1):63-6. PubMed ID: 8137885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-administration of adenosine kinase and deaminase inhibitors produces supra-additive potentiation of N-methyl-D-aspartate-evoked adenosine formation in cortex.
    Hebb MO; White TD
    Eur J Pharmacol; 1998 Mar; 344(2-3):121-5. PubMed ID: 9600645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endogenous glycine modulates N-methyl-D-aspartate-evoked release of adenosine and [3H]noradrenaline from rat cortical slices.
    Craig CG; White TD
    Eur J Pharmacol; 1991 May; 197(1):1-7. PubMed ID: 1832638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate-evoked adenosine and inosine release from neurons requires extracellular calcium.
    Zamzow CR; Bose R; Parkinson FE
    Can J Physiol Pharmacol; 2009 Oct; 87(10):850-8. PubMed ID: 20052011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA-evoked adenosine release from rat cortex does not require the intermediate formation of nitric oxide.
    Craig CG; White TD
    Neurosci Lett; 1993 Aug; 158(2):167-9. PubMed ID: 8233091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of protein kinase C activation on N-methyl-D-aspartate-evoked release of adenosine and [3H]Norepinephrine from rat cortical slices.
    Wang Y; White TD
    J Pharmacol Exp Ther; 1998 Apr; 285(1):105-9. PubMed ID: 9535999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevation of intracellular cAMP evokes activity-dependent release of adenosine in cultured rat forebrain neurons.
    Lu Y; Li Y; Herin GA; Aizenman E; Epstein PM; Rosenberg PA
    Eur J Neurosci; 2004 May; 19(10):2669-81. PubMed ID: 15147301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of endogenous adenosine and its metabolites by the activation of NMDA receptors in the rat hippocampus in vivo.
    Chen Y; Graham DI; Stone TW
    Br J Pharmacol; 1992 Jul; 106(3):632-8. PubMed ID: 1354544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation of excitatory amino acid-evoked adenosine release from rat cortex by inhibitors of adenosine kinase and adenosine deaminase and by acadesine.
    White TD
    Eur J Pharmacol; 1996 May; 303(1-2):27-38. PubMed ID: 8804908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of N-methyl-D-aspartate-evoked release of adenosine and [3H]norepinephrine from rat cortical slices.
    Hoehn K; Craig CG; White TD
    J Pharmacol Exp Ther; 1990 Oct; 255(1):174-81. PubMed ID: 2145421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate-evoked release of endogenous adenosine from rat cortical synaptosomes is mediated by glutamate uptake and not by receptors.
    Hoehn K; White TD
    J Neurochem; 1990 May; 54(5):1716-24. PubMed ID: 1969938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous adenosine release from hippocampal slices: excitatory amino acid agonists stimulate release, antagonists reduce the electrically-evoked release.
    Pedata F; Pazzagli M; Pepeu G
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Nov; 344(5):538-43. PubMed ID: 1811170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of (+/-)epibatidine with NMDA in releasing [3H]noradrenaline and adenosine from slices of rat hippocampus and parietal cortex.
    White TD; Semba K
    Neurosci Lett; 1997 Oct; 235(3):125-8. PubMed ID: 9406885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.