These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 7530318)

  • 1. Characterization of trimethoprim- and sulphisoxazole-resistant Chlamydia trachomatis.
    Wang LL; Henson E; McClarty G
    Mol Microbiol; 1994 Oct; 14(2):271-81. PubMed ID: 7530318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure.
    Tipples G; McClarty G
    J Bacteriol; 1991 Aug; 173(16):4932-40. PubMed ID: 1860812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis.
    Demars R; Weinfurter J; Guex E; Lin J; Potucek Y
    J Bacteriol; 2007 Feb; 189(3):991-1003. PubMed ID: 17122345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of 6-thioguanine on Chlamydia trachomatis growth in wild-type and hypoxanthine-guanine phosphoribosyltransferase-deficient cells.
    Qin B; McClarty G
    J Bacteriol; 1992 May; 174(9):2865-73. PubMed ID: 1569017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ studies on incorporation of nucleic acid precursors into Chlamydia trachomatis DNA.
    McClarty G; Tipples G
    J Bacteriol; 1991 Aug; 173(16):4922-31. PubMed ID: 1907263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The obligate intracellular bacterium Chlamydia trachomatis is auxotrophic for three of the four ribonucleoside triphosphates.
    Tipples G; McClarty G
    Mol Microbiol; 1993 Jun; 8(6):1105-14. PubMed ID: 8361355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquisition and synthesis of folates by obligate intracellular bacteria of the genus Chlamydia.
    Fan H; Brunham RC; McClarty G
    J Clin Invest; 1992 Nov; 90(5):1803-11. PubMed ID: 1430206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in the mutation frequency determining quinolone resistance in Chlamydia trachomatis serovars L2 and D.
    Rupp J; Solbach W; Gieffers J
    J Antimicrob Chemother; 2008 Jan; 61(1):91-4. PubMed ID: 18033786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antimicrobial susceptibility of Chlamydia trachomatis in cell culture.
    Ridgway GL; Owen JM; Oriel JD
    Br J Vener Dis; 1978 Apr; 54(2):103-6. PubMed ID: 638716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single point mutation in CTP synthetase of Chlamydia trachomatis confers resistance to cyclopentenyl cytosine.
    Wylie JL; Wang LL; Tipples G; McClarty G
    J Biol Chem; 1996 Jun; 271(26):15393-400. PubMed ID: 8663065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical evidence for the existence of thymidylate synthase in the obligate intracellular parasite Chlamydia trachomatis.
    Fan HZ; McClarty G; Brunham RC
    J Bacteriol; 1991 Nov; 173(21):6670-7. PubMed ID: 1938873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial activity of several antibiotics and a sulfonamide against Chlamydia trachomatis organisms in cell culture.
    Kuo CC; Wang SP; Grayston JT
    Antimicrob Agents Chemother; 1977 Jul; 12(1):80-3. PubMed ID: 883821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp.
    Binet R; Maurelli AT
    Antimicrob Agents Chemother; 2005 Jul; 49(7):2865-73. PubMed ID: 15980362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of the Chlamydia trachomatis inclusion does not require bacterial replication.
    Engström P; Bergström M; Alfaro AC; Syam Krishnan K; Bahnan W; Almqvist F; Bergström S
    Int J Med Microbiol; 2015 May; 305(3):378-82. PubMed ID: 25771502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrimidine metabolism by intracellular Chlamydia psittaci.
    McClarty G; Qin B
    J Bacteriol; 1993 Aug; 175(15):4652-61. PubMed ID: 8335624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural analysis of the effect of trimethoprim and sulphamethoxazole on the development of Chlamydia trachomatis in cell culture.
    Hammerschlag MR; Vuletin JC
    J Antimicrob Chemother; 1985 Feb; 15(2):209-17. PubMed ID: 3980310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the Thymidylate Synthase
    Rodríguez-Arce I; Martí S; Euba B; Fernández-Calvet A; Moleres J; López-López N; Barberán M; Ramos-Vivas J; Tubau F; Losa C; Ardanuy C; Leiva J; Yuste JE; Garmendia J
    Front Cell Infect Microbiol; 2017; 7():266. PubMed ID: 28676846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nature of the bacterial action of sulfonamides and trimethoprim, alone and in combination.
    Then R; Angehrn P
    J Infect Dis; 1973 Nov; 128():Suppl:498-501. PubMed ID: 4585954
    [No Abstract]   [Full Text] [Related]  

  • 19. Rifampin-resistant RNA polymerase mutants of Chlamydia trachomatis remain susceptible to the ansamycin rifalazil.
    Suchland RJ; Bourillon A; Denamur E; Stamm WE; Rothstein DM
    Antimicrob Agents Chemother; 2005 Mar; 49(3):1120-6. PubMed ID: 15728912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of aminoglycoside 3' adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability.
    Lowden NM; Yeruva L; Johnson CM; Bowlin AK; Fisher DJ
    BMC Res Notes; 2015 Oct; 8():570. PubMed ID: 26471806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.