These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7530654)

  • 1. Influence of obstacles on lipid lateral diffusion: computer simulation of FRAP experiments and application to proteoliposomes and biomembranes.
    Schram V; Tocanne JF; Lopez A
    Eur Biophys J; 1994; 23(5):337-48. PubMed ID: 7530654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization and dynamics of the proteolipid complexes formed by annexin V and lipids in planar supported lipid bilayers.
    Cézanne L; Lopez A; Loste F; Parnaud G; Saurel O; Demange P; Tocanne JF
    Biochemistry; 1999 Mar; 38(9):2779-86. PubMed ID: 10052949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level.
    Deverall MA; Gindl E; Sinner EK; Besir H; Ruehe J; Saxton MJ; Naumann CA
    Biophys J; 2005 Mar; 88(3):1875-86. PubMed ID: 15613633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obstructed diffusion in phase-separated supported lipid bilayers: a combined atomic force microscopy and fluorescence recovery after photobleaching approach.
    Ratto TV; Longo ML
    Biophys J; 2002 Dec; 83(6):3380-92. PubMed ID: 12496105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers.
    Schram V; Thompson TE
    Biophys J; 1997 May; 72(5):2217-25. PubMed ID: 9129824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lateral diffusion of molecules in two-component lipid bilayer: a Monte Carlo simulation study.
    Sugár IP; Biltonen RL
    J Phys Chem B; 2005 Apr; 109(15):7373-86. PubMed ID: 16851844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topology of gel-phase domains and lipid mixing properties in phase-separated two-component phosphatidylcholine bilayers.
    Schram V; Lin HN; Thompson TE
    Biophys J; 1996 Oct; 71(4):1811-22. PubMed ID: 8889158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of membrane domains by FRAP experiments at variable observation areas.
    Salomé L; Cazeils JL; Lopez A; Tocanne JF
    Eur Biophys J; 1998; 27(4):391-402. PubMed ID: 9691468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane helices can induce domain formation in crowded model membranes.
    Domański J; Marrink SJ; Schäfer LV
    Biochim Biophys Acta; 2012 Apr; 1818(4):984-94. PubMed ID: 21884678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and obstructed random-walk perspective.
    Arnold A; Paris M; Auger M
    Biophys J; 2004 Oct; 87(4):2456-69. PubMed ID: 15454443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer.
    Almeida PF; Vaz WL; Thompson TE
    Biochemistry; 1992 Aug; 31(31):7198-210. PubMed ID: 1643051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annexin IV reduces the rate of lateral lipid diffusion and changes the fluid phase structure of the lipid bilayer when it binds to negatively charged membranes in the presence of calcium.
    Gilmanshin R; Creutz CE; Tamm LK
    Biochemistry; 1994 Jul; 33(27):8225-32. PubMed ID: 8031756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micrometer-scale domains in fibroblast plasma membranes.
    Yechiel E; Edidin M
    J Cell Biol; 1987 Aug; 105(2):755-60. PubMed ID: 3624308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Percolation and diffusion in three-component lipid bilayers: effect of cholesterol on an equimolar mixture of two phosphatidylcholines.
    Almeida PF; Vaz WL; Thompson TE
    Biophys J; 1993 Feb; 64(2):399-412. PubMed ID: 8457666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral diffusion in an archipelago. The effect of mobile obstacles.
    Saxton MJ
    Biophys J; 1987 Dec; 52(6):989-97. PubMed ID: 3427202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of solid-supported membranes using a triggered fusion of phospholipid-enriched proteoliposomes prepared from the inner mitochondrial membrane.
    Elie-Caille C; Fliniaux O; Pantigny J; Mazière JC; Bourdillon C
    Langmuir; 2005 May; 21(10):4661-8. PubMed ID: 16032886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transmembrane protein bacterioopsin affects the polarity of the hydrophobic core of the host lipid bilayer.
    Dumas F; Lebrun M; Peyron P; Lopez A; Tocanne J
    Biochim Biophys Acta; 1999 Oct; 1421(2):295-305. PubMed ID: 10518699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.
    Mateo CR; Souto AA; Amat-Guerri F; Acuña AU
    Biophys J; 1996 Oct; 71(4):2177-91. PubMed ID: 8889194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral diffusion of gramicidin S, M-13 coat protein and glycophorin in bilayers of saturated phospholipids. Mean field and Monte Carlo studies.
    Pink DA; Lookman T; MacDonald AL; Zuckermann MJ; Jan N
    Biochim Biophys Acta; 1982 Apr; 687(1):42-56. PubMed ID: 6176272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of annexin V on the structure and dynamics of phosphatidylcholine/phosphatidylserine bilayers: a fluorescence and NMR study.
    Saurel O; Cézanne L; Milon A; Tocanne JF; Demange P
    Biochemistry; 1998 Feb; 37(5):1403-10. PubMed ID: 9477969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.