These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7530828)

  • 1. Conformational changes in p53 analysed using new antibodies to the core DNA binding domain of the protein.
    Vojtesek B; Dolezalova H; Lauerova L; Svitakova M; Havlis P; Kovarik J; Midgley CA; Lane DP
    Oncogene; 1995 Jan; 10(2):389-93. PubMed ID: 7530828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability.
    Hansen S; Lane DP; Midgley CA
    J Mol Biol; 1998 Jan; 275(4):575-88. PubMed ID: 9466932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A PAb240+ conformation of wild type p53 binds DNA.
    McLure KG; Lee PW
    Oncogene; 1996 Sep; 13(6):1297-303. PubMed ID: 8808704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in p53 produce a common conformational effect that can be detected with a panel of monoclonal antibodies directed toward the central part of the p53 protein.
    Legros Y; Meyer A; Ory K; Soussi T
    Oncogene; 1994 Dec; 9(12):3689-94. PubMed ID: 7526318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitope analysis of the human p53 tumour suppressor protein.
    Dolezalová H; Vojtĕsek B; Kovarík J
    Folia Biol (Praha); 1997; 43(1):49-51. PubMed ID: 9158951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of sequence-specific DNA-dependent acetylation of p53: the acetylation motif is exposed upon DNA binding.
    Cesková P; Chichger H; Wallace M; Vojtesek B; Hupp TR
    J Mol Biol; 2006 Mar; 357(2):442-56. PubMed ID: 16438982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 'wildtype' conformation of p53: epitope mapping using hybrid proteins.
    Wang PL; Sait F; Winter G
    Oncogene; 2001 Apr; 20(18):2318-24. PubMed ID: 11402327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DNA binding activity of wild type p53 is modulated by blocking its various antigenic epitopes.
    Wolkowicz R; Elkind NB; Ronen D; Rotter V
    Oncogene; 1995 Mar; 10(6):1167-74. PubMed ID: 7535417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and fine mapping of antigenic sites on the nucleocapsid protein N of porcine reproductive and respiratory syndrome virus with monoclonal antibodies.
    Meulenberg JJ; van Nieuwstadt AP; van Essen-Zandbergen A; Bos-de Ruijter JN; Langeveld JP; Meloen RH
    Virology; 1998 Dec; 252(1):106-14. PubMed ID: 9875321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A monoclonal antibody against DNA binding helix of p53 protein.
    Yolcu E; Sayan BS; Yağci T; Cetin-Atalay R; Soussi T; Yurdusev N; Ozturk M
    Oncogene; 2001 Mar; 20(11):1398-401. PubMed ID: 11313883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific DNA binding by different classes of human p53 mutants.
    Rolley N; Butcher S; Milner J
    Oncogene; 1995 Aug; 11(4):763-70. PubMed ID: 7651740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cellular protein activates the sequence-specific DNA-binding of p53 by interacting with the central conserved region.
    Srinivasan R; Maxwell SA
    Oncogene; 1996 Jan; 12(1):193-200. PubMed ID: 8552392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of epitopes on human p53 using phage-displayed peptide libraries: insights into antibody-peptide interactions.
    Stephen CW; Helminen P; Lane DP
    J Mol Biol; 1995 Apr; 248(1):58-78. PubMed ID: 7537340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the human p53 core domain in the absence of DNA.
    Wang Y; Rosengarth A; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):276-81. PubMed ID: 17327663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro structure-function analysis of the beta-strand 326-333 of human p53.
    Chène P; Mittl P; Grütter M
    J Mol Biol; 1997 Nov; 273(4):873-81. PubMed ID: 9367778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signaling to p53: breaking the posttranslational modification code.
    Appella E; Anderson CW
    Pathol Biol (Paris); 2000 Apr; 48(3):227-45. PubMed ID: 10858956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epitope analysis of the murine p53 tumour suppressor protein.
    Lane DP; Stephen CW; Midgley CA; Sparks A; Hupp TR; Daniels DA; Greaves R; Reid A; Vojtesek B; Picksley SM
    Oncogene; 1996 Jun; 12(11):2461-6. PubMed ID: 8649788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The requirement of the carboxyl terminus of p53 for DNA binding and transcriptional activation depends on the specific p53 binding DNA element.
    Zhang W; Guo XY; Deisseroth AB
    Oncogene; 1994 Sep; 9(9):2513-21. PubMed ID: 8058314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant leap for p53, small step for drug design.
    Anderson ME; Tegtmeyer P
    Bioessays; 1995 Jan; 17(1):3-7. PubMed ID: 7702591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.