These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7530991)

  • 1. Identification of cone classes in Xenopus retina by immunocytochemistry and staining with lectins and vital dyes.
    Zhang J; Kleinschmidt J; Sun P; Witkovsky P
    Vis Neurosci; 1994; 11(6):1185-92. PubMed ID: 7530991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difference in PNA label intensity between short- and middle-wavelength sensitive cones in the ground squirrel retina.
    Szél A; von Schantz M; Röhlich P; Farber DB; van Veen T
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3641-5. PubMed ID: 8258523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemical reactivity of Xenopus laevis retinal rods and cones with several monoclonal antibodies to visual pigments.
    Röhlich P; Szél A; Papermaster DS
    J Comp Neurol; 1989 Dec; 290(1):105-17. PubMed ID: 2592607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional topography of rod and immunocytochemically characterized "blue" and "green" cone photoreceptors in rabbit retina.
    Famiglietti EV; Sharpe SJ
    Vis Neurosci; 1995; 12(6):1151-75. PubMed ID: 8962834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreceptors in a primitive mammal, the South American opossum, Didelphis marsupialis aurita: characterization with anti-opsin immunolabeling.
    Ahnelt PK; Hokoç JN; Röhlich P
    Vis Neurosci; 1995; 12(5):793-804. PubMed ID: 8924404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional anatomy of the photoreceptor and second-order cell mosaics in the retina of Xenopus laevis.
    Wilhelm M; Gábriel R
    Cell Tissue Res; 1999 Jul; 297(1):35-46. PubMed ID: 10398881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary cone fields of the rabbit retina.
    Juliusson B; Bergström A; Röhlich P; Ehinger B; van Veen T; Szél A
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):811-8. PubMed ID: 8125743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate components recognized by the cone-specific monoclonal antibody CSA-1 and by peanut agglutinin are associated with red and green-sensitive cone photoreceptors.
    Röhlich P; Szél A; Johnson LV; Hageman GS
    J Comp Neurol; 1989 Nov; 289(3):395-400. PubMed ID: 2808775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoreceptor cells in the Xenopus retina.
    Röhlich P; Szél A
    Microsc Res Tech; 2000 Sep; 50(5):327-37. PubMed ID: 10941169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical reactivity of rod and cone visual pigments in the sturgeon retina.
    Govardovskii VI; Röhlich P; Szél A; Zueva LV
    Vis Neurosci; 1992 Jun; 8(6):531-7. PubMed ID: 1534023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of chick retina cones and study of their diversity based on oil droplet colour and nucleus position.
    López-López R; López-Gallardo M; Pérez-Alvarez MJ; Prada C
    Cell Tissue Res; 2008 Apr; 332(1):13-24. PubMed ID: 18266011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specialization of the interphotoreceptor matrices around cone and rod photoreceptor cells in the monkey retina, as revealed by lectin cytochemistry.
    Sameshima M; Uehara F; Ohba N
    Exp Eye Res; 1987 Dec; 45(6):845-63. PubMed ID: 3428401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.
    Fei Y
    Mol Vis; 2003 Feb; 9():31-42. PubMed ID: 12592228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective lectin binding of the developing mouse retina.
    Blanks JC; Johnson LV
    J Comp Neurol; 1983 Nov; 221(1):31-41. PubMed ID: 6643744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of fluorescence-labeled lectin binding sites on photoreceptor cells of the monkey retina.
    Uehara F; Sameshima M; Muramatsu T; Ohba N
    Exp Eye Res; 1983 Jan; 36(1):113-23. PubMed ID: 6402370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preference of peanut agglutinin labeling for long-wavelength-sensitive cone photoreceptors in the dace retina.
    Ishikawa M; Hashimoto Y; Tonosaki A; Sakuragi S
    Vision Res; 1997 Feb; 37(4):383-7. PubMed ID: 9156169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique topographic separation of two spectral classes of cones in the mouse retina.
    Szél A; Röhlich P; Caffé AR; Juliusson B; Aguirre G; Van Veen T
    J Comp Neurol; 1992 Nov; 325(3):327-42. PubMed ID: 1447405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short and mid-wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus).
    Dkhissi-Benyahya O; Szel A; Degrip WJ; Cooper HM
    J Comp Neurol; 2001 Oct; 438(4):490-504. PubMed ID: 11559903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four cone types characterized by anti-visual pigment antibodies in the pigeon retina.
    Cserháti P; Szél A; Röhlich P
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):74-81. PubMed ID: 2912914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody.
    Szél A; Diamantstein T; Röhlich P
    J Comp Neurol; 1988 Jul; 273(4):593-602. PubMed ID: 3209737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.