These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 753108)
1. Effect of a yellow ocular filter on chromatic aberration: the fish eye as an example. Sivak JG; Bobier WR Am J Optom Physiol Opt; 1978 Dec; 55(12):813-7. PubMed ID: 753108 [TBL] [Abstract][Full Text] [Related]
3. Chromatic aberration of the fish eye and its effect on refractive state. Sivak JG; Bobier WR Vision Res; 1978; 18(4):453-5. PubMed ID: 664325 [No Abstract] [Full Text] [Related]
4. Possible role of fundus circulation as an intraocular colour filter in certain fishes. Sivak JG; Roth PI Rev Can Biol; 1978 Jun; 37(2):85-90. PubMed ID: 704983 [TBL] [Abstract][Full Text] [Related]
5. Growth of the visual system in the African cichlid fish, Haplochromis burtoni. Optics. Fernald RD; Wright SE Vision Res; 1985; 25(2):155-61. PubMed ID: 4013083 [TBL] [Abstract][Full Text] [Related]
6. The optics of the spherical fish lens. Jagger WS Vision Res; 1992 Jul; 32(7):1271-84. PubMed ID: 1455702 [TBL] [Abstract][Full Text] [Related]
7. Compensation for longitudinal chromatic aberration in the eye of the firefly squid, Watasenia scintillans. Kröger RH; Gislén A Vision Res; 2004; 44(18):2129-34. PubMed ID: 15183679 [TBL] [Abstract][Full Text] [Related]
8. The Glenn A. Fry Award Lecture: optics of the crystalline lens. Sivak JG Am J Optom Physiol Opt; 1985 May; 62(5):299-308. PubMed ID: 3890552 [TBL] [Abstract][Full Text] [Related]
9. [Optics of the normal eye]. Delmarcelle Y Arch Ophtalmol (Paris); 1977; 37(2):153-62. PubMed ID: 142469 [No Abstract] [Full Text] [Related]
10. Accommodation-dependent model of the human eye with aspherics. Navarro R; Santamaría J; Bescós J J Opt Soc Am A; 1985 Aug; 2(8):1273-81. PubMed ID: 4032096 [TBL] [Abstract][Full Text] [Related]
11. Chromatic dispersion of the ocular media. Sivak JG; Mandelman T Vision Res; 1982; 22(8):997-1003. PubMed ID: 6982563 [TBL] [Abstract][Full Text] [Related]
12. Contribution of the crystalline lens to the spherical aberration of the eye. el-Hage SG; Berny F J Opt Soc Am; 1973 Feb; 63(2):205-11. PubMed ID: 4700787 [No Abstract] [Full Text] [Related]
13. Image formation by the crystalline lens and eye of the rainbow trout. Jagger WS Vision Res; 1996 Sep; 36(17):2641-55. PubMed ID: 8917751 [TBL] [Abstract][Full Text] [Related]
14. Compensation of corneal aberrations by the internal optics in the human eye. Artal P; Guirao A; Berrio E; Williams DR J Vis; 2001; 1(1):1-8. PubMed ID: 12678609 [TBL] [Abstract][Full Text] [Related]
16. The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration. Kröger RH; Wagner HJ J Comp Physiol A; 1996 Dec; 179(6):837-42. PubMed ID: 8956500 [TBL] [Abstract][Full Text] [Related]
17. Effect of ocular chromatic aberration on monocular visual performance. Thibos LN; Bradley A; Zhang XX Optom Vis Sci; 1991 Aug; 68(8):599-607. PubMed ID: 1923336 [TBL] [Abstract][Full Text] [Related]
18. Measurement of Longitudinal Chromatic Aberration in the Last Crystalline Lens Surface Using Hartmann Test and Purkinje Images. Calderon-Uribe U; Hernandez-Gomez G; Gomez-Vieyra A Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408266 [TBL] [Abstract][Full Text] [Related]