These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 753108)

  • 21. Optical plasticity in fish lenses.
    Kröger RH
    Prog Retin Eye Res; 2013 May; 34():78-88. PubMed ID: 23262260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo longitudinal chromatic aberration of pseudophakic eyes.
    Siedlecki D; Jóźwik A; Zając M; Hill-Bator A; Turno-Kręcicka A
    Optom Vis Sci; 2014 Feb; 91(2):240-6. PubMed ID: 24270638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The eye and its disorders. 14. Refraction in the normal eye.
    Trevor-Roper PD
    Int Ophthalmol Clin; 1974; 14(1-2):213-23. PubMed ID: 4420417
    [No Abstract]   [Full Text] [Related]  

  • 25. Longitudinal chromatic aberration of the human infant eye.
    Wang J; Candy TR; Teel DF; Jacobs RJ
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2263-70. PubMed ID: 18758552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni.
    Kröger RH; Campbell MC; Munger R; Fernald RD
    Vision Res; 1994 Jul; 34(14):1815-22. PubMed ID: 7941384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of age on the chronatic aberration of the eye.
    Millodot M
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 Mar; 198(3):235-43. PubMed ID: 1083167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adjusting a light dispersion model to fit measurements from vertebrate ocular media as well as ray-tracing in fish lenses.
    Gagnon YL; Kröger RH; Söderberg B
    Vision Res; 2010 Apr; 50(9):850-3. PubMed ID: 20219517
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A possible change of refractive index with age and its relevance to chromatic aberration.
    Millodot M; Newton IA
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 Dec; 201(2):159-67. PubMed ID: 1087839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Le Grand eye for the study of ocular chromatic aberration.
    Villegas ER; Carretero L; Fimia A
    Ophthalmic Physiol Opt; 1996 Nov; 16(6):528-31. PubMed ID: 8944201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The spectral transmission of freshwater teleost ocular media--an interspecific comparison and a guide to potential ultraviolet sensitivity.
    Douglas RH; McGuigan CM
    Vision Res; 1989; 29(7):871-9. PubMed ID: 2623829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The chromatic aberration of the eye between wavelengths 200 nm and 2000 nm: some theoretical considerations.
    Tucker J
    Br J Physiol Opt; 1974; 29(3):118-25. PubMed ID: 4470006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ocular media transmission of coral reef fish--can coral reef fish see ultraviolet light?
    Siebeck UE; Marshall NJ
    Vision Res; 2001 Jan; 41(2):133-49. PubMed ID: 11163849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatic and monochromatic optical resolution in the rainbow trout.
    Jagger WS
    Vision Res; 1997 May; 37(10):1249-54. PubMed ID: 9205716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 'Yellow lens' eyes of a stomiatoid deep-sea fish, Malacosteus niger.
    Somiya H
    Proc R Soc Lond B Biol Sci; 1982 Jul; 215(1201):481-9. PubMed ID: 6127717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ABERRATIONS OF THE EYE AND THEIR EFFECTS ON VISION: 1. SPHERICAL ABERRATION.
    JENKINS TC
    Br J Physiol Opt; 1963; 20():59-91. PubMed ID: 14042743
    [No Abstract]   [Full Text] [Related]  

  • 38. [Transparency of the cornea and ocular lens].
    Bielski A; Bieganowski L; Kossakowski A; Lisicki E; Maciejewski K
    Klin Oczna; 1988; 90 Suppl():451. PubMed ID: 3275352
    [No Abstract]   [Full Text] [Related]  

  • 39. Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye.
    Kelly JE; Mihashi T; Howland HC
    J Vis; 2004 Apr; 4(4):262-71. PubMed ID: 15134473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of the cornea and lens to the spherical aberration of the eye.
    Millodot M; Sivak J
    Vision Res; 1979; 19(6):685-7. PubMed ID: 547478
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.