BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

31 related articles for article (PubMed ID: 7531425)

  • 1. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials.
    Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM
    Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pregnenolone sulfate enhances long-term potentiation in CA1 in rat hippocampus slices through the modulation of N-methyl-D-aspartate receptors.
    Sliwinski A; Monnet FP; Schumacher M; Morin-Surun MP
    J Neurosci Res; 2004 Dec; 78(5):691-701. PubMed ID: 15505794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus.
    Ganong AH; Cotman CW
    J Pharmacol Exp Ther; 1986 Jan; 236(1):293-9. PubMed ID: 2867215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in prefrontal cortical pyramidal neurons by a novel allosteric potentiator.
    Baumbarger PJ; Muhlhauser M; Zhai J; Yang CR; Nisenbaum ES
    J Pharmacol Exp Ther; 2001 Jul; 298(1):86-102. PubMed ID: 11408529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
    Verdoorn TA; Dingledine R
    Mol Pharmacol; 1988 Sep; 34(3):298-307. PubMed ID: 2901662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabotropic glutamate receptor 1 activity generates persistent, N-methyl-D-aspartate receptor-dependent depression of hippocampal pyramidal cell excitability.
    Clement JP; Randall AD; Brown JT
    Eur J Neurosci; 2009 Jun; 29(12):2347-62. PubMed ID: 19490024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord.
    Vargová L; Jendelová P; Chvátal A; Syková E
    J Cereb Blood Flow Metab; 2001 Sep; 21(9):1077-89. PubMed ID: 11524612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus.
    Luccini E; Musante V; Neri E; Raiteri M; Pittaluga A
    J Neurosci Res; 2007 Dec; 85(16):3657-65. PubMed ID: 17671992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors.
    Curras MC; Dingledine R
    Mol Pharmacol; 1992 Mar; 41(3):520-6. PubMed ID: 1372086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of alpha-adrenoceptors indirectly facilitates sodium pumping in frog motoneurons.
    Shope SB; Hackman JC; Holohean AM; Davidoff RA
    Brain Res; 1993 Dec; 630(1-2):207-13. PubMed ID: 7509707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro studies of the influence of glutamatergic agonists on the Na+,K(+)-ATPase and K(+)-p-nitrophenylphosphatase activities in the hippocampus and frontal cortex of rats.
    Contó MB; Venditti MA
    J Negat Results Biomed; 2012 May; 11():12. PubMed ID: 22574873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminium reduces glutamate-activated currents of rat hippocampal neurones.
    Platt B; Haas H; Büsselberg D
    Neuroreport; 1994 Nov; 5(17):2329-32. PubMed ID: 7533557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Failure of neuronal ion exchange, not potentiated excitation, causes excitotoxicity after inhibition of oxidative phosphorylation.
    Riepe MW; Hori N; Ludolph AC; Carpenter DO
    Neuroscience; 1995 Jan; 64(1):91-7. PubMed ID: 7708218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of acetylated tubulin in the regulation of Na+,K+ -ATPase activity in cultured astrocytes.
    Casale CH; Previtali G; Barra HS
    FEBS Lett; 2003 Jan; 534(1-3):115-8. PubMed ID: 12527371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of extracellular proteins in hippocampus during depolarization.
    Nyström B; Hamberger A; Karlsson JO
    Neurochem Int; 1986; 9(1):55-9. PubMed ID: 20493100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of post-depolarization hyperpolarizations in a grease-gap recording preparation.
    Fanning GR; Ganesalingam N; Davies SN
    Arch Int Pharmacodyn Ther; 1994; 327(3):355-62. PubMed ID: 7531425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine preconditions against ouabain but not against glutamate on CA1-evoked potentials in rat hippocampal slices.
    Ferguson AL; Stone TW
    Eur J Neurosci; 2008 Nov; 28(10):2084-98. PubMed ID: 19046389
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.