BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7531653)

  • 1. Folding intermediates are involved in genetic diseases?
    Bychkova VE; Ptitsyn OB
    FEBS Lett; 1995 Feb; 359(1):6-8. PubMed ID: 7531653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misfolded proteins in the endoplasmic reticulum.
    Perlmutter DH
    Lab Invest; 1999 Jun; 79(6):623-38. PubMed ID: 10378505
    [No Abstract]   [Full Text] [Related]  

  • 3. Altered protein folding may be the molecular basis of most cases of cystic fibrosis.
    Thomas PJ; Ko YH; Pedersen PL
    FEBS Lett; 1992 Nov; 312(1):7-9. PubMed ID: 1385213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders.
    Gregersen N; Bross P; Jørgensen MM; Corydon TJ; Andresen BS
    J Inherit Metab Dis; 2000 Jul; 23(5):441-7. PubMed ID: 10947197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein.
    Brown CR; Hong-Brown LQ; Biwersi J; Verkman AS; Welch WJ
    Cell Stress Chaperones; 1996 Jun; 1(2):117-25. PubMed ID: 9222597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspired respiratory solutions.
    Geisow MJ
    Trends Biotechnol; 1992 Jun; 10(6):181-2. PubMed ID: 1379819
    [No Abstract]   [Full Text] [Related]  

  • 8. Introduction: molecular chaperones of the ER: their role in protein folding and genetic disease.
    Brooks DA
    Semin Cell Dev Biol; 1999 Oct; 10(5):441-2. PubMed ID: 10597626
    [No Abstract]   [Full Text] [Related]  

  • 9. Molecular epidemiology: a key to better understanding of chronic obstructive lung disease.
    Snider GL
    Monaldi Arch Chest Dis; 1995 Jan; 50(1):3-6. PubMed ID: 7538006
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of four new mutations in the cystic fibrosis transmembrane conductance regulator gene: I148T, L1077P, Y1092X, 2183AA-->G.
    Bozon D; Zielenski J; Rininsland F; Tsui LC
    Hum Mutat; 1994; 3(3):330-2. PubMed ID: 7517268
    [No Abstract]   [Full Text] [Related]  

  • 11. The search for susceptibility genes of COPD.
    Luisetti M; Pignatti PF
    Monaldi Arch Chest Dis; 1995 Jan; 50(1):28-32. PubMed ID: 7538005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding.
    Logan J; Hiestand D; Daram P; Huang Z; Muccio DD; Hartman J; Haley B; Cook WJ; Sorscher EJ
    J Clin Invest; 1994 Jul; 94(1):228-36. PubMed ID: 7518829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calnexin family members as modulators of genetic diseases.
    Chevet E; Jakob CA; Thomas DY; Bergeron JJ
    Semin Cell Dev Biol; 1999 Oct; 10(5):473-80. PubMed ID: 10597630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel nonsense mutation, W846XI (amber termination), in exon 14a of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.
    Cheadle JP; al-Jader LN; Meredith AL
    Hum Mol Genet; 1993 Jul; 2(7):1067-8. PubMed ID: 7689897
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel mutation (M1V) in the translation initiation codon of the cystic fibrosis transmembrane conductance regulator gene, in three CF chromosomes of Italian origin.
    Cheadle JP; Belloni E; Ferrari M; Millar-Jones L; Meredith AL
    Hum Mol Genet; 1994 Aug; 3(8):1431-2. PubMed ID: 7527269
    [No Abstract]   [Full Text] [Related]  

  • 16. CFTR function and prospects for therapy.
    Riordan JR
    Annu Rev Biochem; 2008; 77():701-26. PubMed ID: 18304008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new missense mutation G1249E in exon 20 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene.
    Greil I; Wagner K; Rosenkranz W
    Hum Hered; 1994; 44(4):238-40. PubMed ID: 7520022
    [No Abstract]   [Full Text] [Related]  

  • 18. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    Chung WJ; Goeckeler-Fried JL; Havasi V; Chiang A; Rowe SM; Plyler ZE; Hong JS; Mazur M; Piazza GA; Keeton AB; White EL; Rasmussen L; Weissman AM; Denny RA; Brodsky JL; Sorscher EJ
    PLoS One; 2016; 11(10):e0163615. PubMed ID: 27732613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W; Kim KH; Lee MG
    Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of novel and rare mutations in exon 4 of the cystic fibrosis gene by SSCP.
    Shackleton S; Beards F; Harris A
    Hum Mol Genet; 1992 Sep; 1(6):439-40. PubMed ID: 1284529
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.