BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 7532512)

  • 1. Trypanosoma brucei brucei and T. b. gambiense: stumpy bloodstream forms express more CB1 epitope in endosomes and lysosomes than slender forms.
    Brickman MJ; Balber AE
    J Eukaryot Microbiol; 1994; 41(6):533-6. PubMed ID: 7532512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanosoma brucei rhodesiense: membrane glycoproteins localized primarily in endosomes and lysosomes of bloodstream forms.
    Brickman MJ; Balber AE
    Exp Parasitol; 1993 Jun; 76(4):329-44. PubMed ID: 7685707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes.
    Seed JR; Black SJ
    J Parasitol; 1997 Aug; 83(4):656-62. PubMed ID: 9267408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and antigenic variation of Trypanosoma brucei, T. rhodesiense and T. gambiense in subcutaneous millipore chambers.
    Ballon-Landa G; Douglas H; Colmerauer ME; Goddard D; Davis CE
    Trans R Soc Trop Med Hyg; 1985; 79(1):24-8. PubMed ID: 2581337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trypanosoma brucei gambiense and T. b. rhodesiense: concanavalin A binding to the membrane and flagellar pocket of bloodstream and procyclic forms.
    Balber AE; Frommel TO
    J Protozool; 1988 May; 35(2):214-9. PubMed ID: 3397913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of multiplication rates in primary and challenge infections of Trypanosoma brucei bloodstream forms.
    McLintock LM; Turner CM; Vickerman K
    Parasitology; 1990 Aug; 101 Pt 1():49-55. PubMed ID: 2235074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing and transport of a lysosomal membrane glycoprotein is developmentally regulated in African trypanosomes.
    Kelley RJ; Brickman MJ; Balber AE
    Mol Biochem Parasitol; 1995 Nov; 74(2):167-78. PubMed ID: 8719158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between bloodstream and procyclic form trypanosomes for serological diagnosis of African human trypanosomiasis.
    Katende JM; Nantulya VM; Musoke AJ
    Trans R Soc Trop Med Hyg; 1987; 81(4):607-8. PubMed ID: 3328347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture.
    Reuner B; Vassella E; Yutzy B; Boshart M
    Mol Biochem Parasitol; 1997 Dec; 90(1):269-80. PubMed ID: 9497048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trypanosoma brucei brucei and Trypanosoma brucei gambiense: stage specific differences in wheat germ agglutinin binding and in endoglycosidase H sensitivity of glycoprotein oligosaccharides.
    Frommel TO; Kohler MF; Balber AE
    Exp Parasitol; 1987 Aug; 64(1):104-10. PubMed ID: 2440711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient inhibition of protein synthesis accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms.
    Bass KE; Wang CC
    Mol Biochem Parasitol; 1992 Nov; 56(1):129-40. PubMed ID: 1474991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutual self-defence: the trypanolytic factor story.
    Pays E; Vanhollebeke B
    Microbes Infect; 2008 Jul; 10(9):985-9. PubMed ID: 18675374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of long slender (LS) to short stumpy (SS) transformation in the African trypanosomes.
    Seed JR; Sechelski JB
    J Protozool; 1989; 36(6):572-7. PubMed ID: 2600880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Trypanosoma brucei isolated from lymph nodes of rats.
    Tanner M; Jenni L; Hecker H; Brun R
    Parasitology; 1980 Apr; 80(2):383-91. PubMed ID: 6154277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypanosoma brucei: in vitro slender-to-stumpy differentiation of culture-adapted, monomorphic bloodstream forms.
    Breidbach T; Ngazoa E; Steverding D
    Exp Parasitol; 2002 Aug; 101(4):223-30. PubMed ID: 12594963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoclonal antibodies that distinguish Trypanosoma congolense, T. vivax and T. brucei.
    Nantulya VM; Musoke AJ; Rurangirwa FR; Saigar N; Minja SH
    Parasite Immunol; 1987 Jul; 9(4):421-31. PubMed ID: 3306569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture.
    Hamm B; Schindler A; Mecke D; Duszenko M
    Mol Biochem Parasitol; 1990 Apr; 40(1):13-22. PubMed ID: 2348830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the in vitro transformation technique to distinguish Trypanosoma evansi from cyclically transmitted Trypanozoon stocks.
    Olaho-Mukani W; Mukunza F; Kimani JK; Njoka PK; Walubengo J
    Trop Med Parasitol; 1993 Jun; 44(2):108-10. PubMed ID: 8367656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological activation of the mitochondrion and the transformation capacity of DFMO induced intermediate and short stumpy bloodstream form trypanosomes.
    Giffin BF; McCann PP
    Am J Trop Med Hyg; 1989 May; 40(5):487-93. PubMed ID: 2499202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture.
    Vassella E; Boshart M
    Mol Biochem Parasitol; 1996 Nov; 82(1):91-105. PubMed ID: 8943153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.