These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7532643)

  • 41. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3.
    BenEzra D
    Invest Ophthalmol Vis Sci; 1997 Nov; 38(12):2433-4. PubMed ID: 9375559
    [No Abstract]   [Full Text] [Related]  

  • 42. Vicenistatin, a novel 20-membered macrocyclic lactam antitumor antibiotic.
    Shindo K; Kamishohara M; Odagawa A; Matsuoka M; Kawai H
    J Antibiot (Tokyo); 1993 Jul; 46(7):1076-81. PubMed ID: 8360102
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth plate chondrocytes inhibit neo-angiogenesis -- a possible mechanism for tumor control.
    Cheung WH; Lee KM; Fung KP; Leung KS
    Cancer Lett; 2001 Feb; 163(1):25-32. PubMed ID: 11163105
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Malolactomycins C and D, new 40-membered macrolides active against Botrytis.
    Tanaka Y; Yoshida H; Enomoto Y; Shiomi K; Shinose M; Takahashi Y; Liu JR; Omura S
    J Antibiot (Tokyo); 1997 Mar; 50(3):194-200. PubMed ID: 9127189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Alirinomycin C--a novel macrolide antibiotic from Streptomyces felleus VIZR 8].
    Shenin IuD; Novikova II; Kaminskiĭ GV; Ivanova IA
    Antibiot Khimioter; 2001; 46(2):10-6. PubMed ID: 11544745
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of the mast cell activator compound 48/80 and heparin on angiogenesis in the chick chorioallantoic membrane.
    Clinton M; Long WF; Williamson FB; Duncan JI; Thompson WD
    Int J Microcirc Clin Exp; 1988 Nov; 7(4):315-26. PubMed ID: 2464553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo effects of vascular endothelial growth factor on the chicken chorioallantoic membrane.
    Wilting J; Christ B; Bokeloh M; Weich HA
    Cell Tissue Res; 1993 Oct; 274(1):163-72. PubMed ID: 7694800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exploiting the natural metabolic diversity of Streptomyces venezuelae to generate unusual reduced macrolides.
    Park JW; Oh HS; Jung WS; Park SR; Han AR; Ban YH; Kim EJ; Kang HY; Yoon YJ
    Chem Commun (Camb); 2008 Nov; (44):5782-4. PubMed ID: 19009080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent advances in the field of 16-membered macrolide antibiotics.
    Cui W; Ma S
    Mini Rev Med Chem; 2011 Oct; 11(12):1009-18. PubMed ID: 21861810
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ferensimycins A and B. Two polyether antibiotics. Taxonomy, fermentation, isolation, characterization and structural studies.
    Kusakabe Y; Mizuno T; Kawabata S; Tanji S; Seino A; Seto H; Otake N
    J Antibiot (Tokyo); 1982 Sep; 35(9):1119-29. PubMed ID: 7142018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice.
    Kuba K; Matsumoto K; Date K; Shimura H; Tanaka M; Nakamura T
    Cancer Res; 2000 Dec; 60(23):6737-43. PubMed ID: 11118060
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Staphcoccomycin, a new basic macrolide antibiotic.
    Shimi IR; Shoukry S; Ali FT
    J Antibiot (Tokyo); 1979 Dec; 32(12):1248-55. PubMed ID: 541251
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Irumamycin, an antifungal 20-membered macrolide produced by a Streptomyces. Taxonomy, fermentation and biological properties.
    Omura S; Tanaka Y; Takahashi Y; Chia I; Inoue M; Iwai Y
    J Antibiot (Tokyo); 1984 Dec; 37(12):1572-8. PubMed ID: 6526726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of macrolide antibiotics from a cytotoxic soil Streptomyces sp. strain ZDB.
    Dame ZT; Ruanpanun P
    World J Microbiol Biotechnol; 2017 Jul; 33(7):139. PubMed ID: 28585168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Trapidil inhibits endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane and in the rat cornea.
    Benelli U; Lepri A; Nardi M; Danesi R; Del Tacca M
    J Ocul Pharmacol Ther; 1995; 11(2):157-66. PubMed ID: 8564636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systemic application of photosensitizers in the chick chorioallantoic membrane (CAM) model: photodynamic response of CAM vessels and 5-aminolevulinic acid uptake kinetics by transplantable tumors.
    Hornung R; Hammer-Wilson MJ; Kimel S; Liaw LH; Tadir Y; Berns MW
    J Photochem Photobiol B; 1999 Mar; 49(1):41-9. PubMed ID: 10365445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes.
    Lu C; Liao G; Zhang J; Tan H
    Microb Cell Fact; 2015 Nov; 14():173. PubMed ID: 26525981
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new antiherpetic agent produced by Streptomyces sp. strain no. 758.
    Uyeda M; Kondo KI; Ito A; Yokomizo K; Kido Y
    J Antibiot (Tokyo); 1995 Nov; 48(11):1234-9. PubMed ID: 8557562
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mycinamicins, new macrolide antibiotics. XIII. Isolation and structures of novel fermentation products from Micromonospora griseorubida (FERM BP-705).
    Kinoshita K; Takenaka S; Suzuki H; Morohoshi T; Hayashi M
    J Antibiot (Tokyo); 1992 Jan; 45(1):1-9. PubMed ID: 1548179
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Eponemycin, a novel antibiotic, is a highly powerful angiogenesis inhibitor.
    Oikawa T; Hasegawa M; Shimamura M; Ashino H; Murota S; Morita I
    Biochem Biophys Res Commun; 1991 Dec; 181(3):1070-6. PubMed ID: 1722395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.