These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7532759)

  • 1. Relationship between structure and sodium channel blockade by lidocaine and its amino-alkyl derivatives.
    Liu L; Wendt DJ; Grant AO
    J Cardiovasc Pharmacol; 1994 Nov; 24(5):803-12. PubMed ID: 7532759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of interaction of the lidocaine metabolite glycylxylidide with the cardiac sodium channel. Additive blockade with lidocaine.
    Wendt DJ; Starmer CF; Grant AO
    Circ Res; 1992 Jun; 70(6):1254-73. PubMed ID: 1315638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common molecular determinants of flecainide and lidocaine block of heart Na+ channels: evidence from experiments with neutral and quaternary flecainide analogues.
    Liu H; Atkins J; Kass RS
    J Gen Physiol; 2003 Mar; 121(3):199-214. PubMed ID: 12601084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationship of lidocaine homologs producing tonic and frequency-dependent impulse blockade in nerve.
    Bokesch PM; Post C; Strichartz G
    J Pharmacol Exp Ther; 1986 Jun; 237(3):773-81. PubMed ID: 2423682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex blockade of TTX-resistant Na+ currents by lidocaine and bupivacaine reduce firing frequency in DRG neurons.
    Scholz A; Kuboyama N; Hempelmann G; Vogel W
    J Neurophysiol; 1998 Apr; 79(4):1746-54. PubMed ID: 9535944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of lysophosphatidylcholine-modified cardiac Na channels by a lidocaine derivative QX-222.
    Undrovinas AI; Makielski JC
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H790-7. PubMed ID: 8770124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockade of cardiac sodium channels by lidocaine. Single-channel analysis.
    Grant AO; Dietz MA; Gilliam FR; Starmer CF
    Circ Res; 1989 Nov; 65(5):1247-62. PubMed ID: 2553292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coexpression of beta 1 with cardiac sodium channel alpha subunits in oocytes decreases lidocaine block.
    Makielski JC; Limberis JT; Chang SY; Fan Z; Kyle JW
    Mol Pharmacol; 1996 Jan; 49(1):30-9. PubMed ID: 8569709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected mexiletine responses of a mutant cardiac Na+ channel implicate the selectivity filter as a structural determinant of antiarrhythmic drug access.
    Sasaki K; Makita N; Sunami A; Sakurada H; Shirai N; Yokoi H; Kimura A; Tohse N; Hiraoka M; Kitabatake A
    Mol Pharmacol; 2004 Aug; 66(2):330-6. PubMed ID: 15266024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative structure activity studies of antiarrhythmic properties in a series of lidocaine and procainamide derivatives.
    Ehring GR; Moyer JW; Hondeghem LM
    J Pharmacol Exp Ther; 1988 Feb; 244(2):479-92. PubMed ID: 2450194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amine blockers of the cytoplasmic mouth of sodium channels: a small structural change can abolish voltage dependence.
    Zamponi GW; French RJ
    Biophys J; 1994 Sep; 67(3):1015-27. PubMed ID: 7811912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine.
    Wang Y; Mi J; Lu K; Lu Y; Wang K
    PLoS One; 2015; 10(6):e0128653. PubMed ID: 26068619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pKa does not predict pH potentiation of sodium channel blockade by lidocaine and W6211 in guinea pig ventricular myocardium.
    Moorman JR; Yee R; Bjornsson T; Starmer CF; Grant AO; Strauss HC
    J Pharmacol Exp Ther; 1986 Jul; 238(1):159-66. PubMed ID: 2425074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels.
    McNulty MM; Edgerton GB; Shah RD; Hanck DA; Fozzard HA; Lipkind GM
    J Physiol; 2007 Jun; 581(Pt 2):741-55. PubMed ID: 17363383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blockade of rabbit atrial sodium channels by lidocaine. Characterization of continuous and frequency-dependent blocking.
    Gilliam FR; Starmer CF; Grant AO
    Circ Res; 1989 Sep; 65(3):723-39. PubMed ID: 2548763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of kinetics and steady-state block of cardiac sodium channels by lidocaine.
    Wendt DJ; Starmer CF; Grant AO
    Am J Physiol; 1993 May; 264(5 Pt 2):H1588-98. PubMed ID: 8388658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative sodium current block by bupivacaine and lidocaine in neonatal rat myocytes.
    Berman MF; Lipka LJ
    Anesth Analg; 1994 Aug; 79(2):350-6. PubMed ID: 7639378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites.
    Barber MJ; Starmer CF; Grant AO
    Circ Res; 1991 Sep; 69(3):677-96. PubMed ID: 1651817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective block of late currents in the DeltaKPQ Na(+) channel mutant by pilsicainide and lidocaine with distinct mechanisms.
    Ono K; Kaku T; Makita N; Kitabatake A; Arita M
    Mol Pharmacol; 2000 Feb; 57(2):392-400. PubMed ID: 10648650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of cardiac sodium channels. Competition between the permeant ion and antiarrhythmic drugs.
    Barber MJ; Wendt DJ; Starmer CF; Grant AO
    J Clin Invest; 1992 Aug; 90(2):368-81. PubMed ID: 1322937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.