These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 7533207)

  • 1. Voltage dependence of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS; Bisognano JD; Pratap PR
    J Gen Physiol; 1994 Nov; 104(5):961-83. PubMed ID: 7533207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC; Novak TS
    J Gen Physiol; 1997 Feb; 109(2):201-16. PubMed ID: 9041449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton (or hydroxide) fluxes and the biphasic osmotic response of human red blood cells.
    Bisognano JD; Dix JA; Pratap PR; Novak TS; Freedman JC
    J Gen Physiol; 1993 Jul; 102(1):99-123. PubMed ID: 8397278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced DIDS-sensitive chloride conductance in Ae1-/- mouse erythrocytes.
    Alper SL; Vandorpe DH; Peters LL; Brugnara C
    Blood Cells Mol Dis; 2008; 41(1):22-34. PubMed ID: 18329299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net efflux of chloride from cell suspensions measured with a K+ electrode.
    Rothstein A; Mack E
    Biochim Biophys Acta; 1989 Dec; 987(2):239-42. PubMed ID: 2481504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between anion exchange and net anion flow across the human red blood cell membrane.
    Knauf PA; Fuhrmann GF; Rothstein S; Rothstein A
    J Gen Physiol; 1977 Mar; 69(3):363-86. PubMed ID: 15047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The anion transport inhibitor DIDS increases rat hepatocyte K+ conductance via uptake through the bilirubin pathway.
    Wehner F; Rosin-Steiner S; Beetz G; Sauer H
    J Physiol; 1993 Nov; 471():617-35. PubMed ID: 8120826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of the increase in cation permeability of human erythrocytes in low-chloride media. Involvement of the anion transport protein capnophorin.
    Jones GS; Knauf PA
    J Gen Physiol; 1985 Nov; 86(5):721-38. PubMed ID: 4067572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting chloride conductance in apical membrane vesicles from human placenta.
    Faller D; Ryan MP
    J Membr Biol; 1992 Dec; 130(3):227-39. PubMed ID: 1337111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory volume decrease in lamprey erythrocytes: mechanisms of K+ and Cl- loss.
    Virkki LV; Nikinmaa M
    Am J Physiol; 1995 Mar; 268(3 Pt 2):R590-7. PubMed ID: 7900900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways of Cl- transport in human fibroblasts.
    Lin P; Gruenstein E
    Am J Physiol; 1988 Jul; 255(1 Pt 1):C112-22. PubMed ID: 2968766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid electrogenic sulfate-chloride exchange mediated by chemically modified band 3 in human erythrocytes.
    Jennings ML
    J Gen Physiol; 1995 Jan; 105(1):21-47. PubMed ID: 7537324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrogenic behavior of the human red cell Ca2+ pump revealed by disulfonic stilbenes.
    Romero PJ; Ortiz CE
    J Membr Biol; 1988 Mar; 101(3):237-46. PubMed ID: 2455059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations of intracellular pH in human erythrocytes via K(+)(Na(+))/H(+) exchange under low ionic strength conditions.
    Kummerow D; Hamann J; Browning JA; Wilkins R; Ellory JC; Bernhardt I
    J Membr Biol; 2000 Aug; 176(3):207-16. PubMed ID: 10931972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes.
    Janas T; Bjerrum PJ; Brahm J; Wieth JO
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C601-6. PubMed ID: 2801916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S; Hoffman JF
    J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride secretion by porcine ciliary epithelium: New insight into species similarities and differences in aqueous humor formation.
    Kong CW; Li KK; To CH
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5428-36. PubMed ID: 17122133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrogenic proton-regulated oxalate/chloride exchange by lobster hepatopancreatic brush-border membrane vesicles.
    Gerencser GA; Robbins F; Zhang J; Ahearn GA
    J Exp Biol; 2004 Feb; 207(Pt 4):571-8. PubMed ID: 14718500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stilbene disulfonates block ATP-sensitive K+ channels in guinea pig ventricular myocytes.
    Furukawa T; VirĂ¡g L; Sawanobori T; Hiraoka M
    J Membr Biol; 1993 Dec; 136(3):289-302. PubMed ID: 8114079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.