These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 7533638)
1. NMDA, kainate, and AMPA depolarize nondopamine neurons in the rat ventral tegmentum. Wang T; French ED Brain Res Bull; 1995; 36(1):39-43. PubMed ID: 7533638 [TBL] [Abstract][Full Text] [Related]
2. Electrophysiological evidence for the existence of NMDA and non-NMDA receptors on rat ventral tegmental dopamine neurons. Wang T; French ED Synapse; 1993 Mar; 13(3):270-7. PubMed ID: 7684531 [TBL] [Abstract][Full Text] [Related]
3. Comparative patch clamp studies on the kinetics and selectivity of glutamate receptor antagonism by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) and 1-(4-amino-phenyl)-4-methyl-7,8-methyl-endioxyl-5H-2,3-benzodiaze pine (GYKI 52466). Parsons CG; Gruner R; Rozental J Neuropharmacology; 1994 May; 33(5):589-604. PubMed ID: 7523977 [TBL] [Abstract][Full Text] [Related]
4. Effects of decahydroisoquinoline-3-carboxylic acid monohydrate, a novel AMPA receptor antagonist, on glutamate-induced CA2+ responses and neurotoxicity in rat cortical and cerebellar granule neurons. Liljequist S; Cebers G; Kalda A Biochem Pharmacol; 1995 Nov; 50(11):1761-74. PubMed ID: 8615854 [TBL] [Abstract][Full Text] [Related]
5. Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemisected spinal cord in vitro. Zeman S; Lodge D Br J Pharmacol; 1992 Jun; 106(2):367-72. PubMed ID: 1382781 [TBL] [Abstract][Full Text] [Related]
6. Effects of phencyclidine on spontaneous and excitatory amino acid-induced activity of ventral tegmental dopamine neurons: an extracellular in vitro study. Wang T; French ED Life Sci; 1993; 53(1):49-56. PubMed ID: 7685848 [TBL] [Abstract][Full Text] [Related]
7. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Kristensen BW; Noraberg J; Zimmer J Brain Res; 2001 Oct; 917(1):21-44. PubMed ID: 11602227 [TBL] [Abstract][Full Text] [Related]
8. Effects of corticosterone on excitatory amino acid responses in dopamine-sensitive neurons in the ventral tegmental area. Cho K; Little HJ Neuroscience; 1999; 88(3):837-45. PubMed ID: 10363821 [TBL] [Abstract][Full Text] [Related]
9. NMDA and AMPA receptors evoke transmitter release from noradrenergic axon terminals in the rat spinal cord. Sundström E; Holmberg L; Souverbie F Neurochem Res; 1998 Dec; 23(12):1501-7. PubMed ID: 9821153 [TBL] [Abstract][Full Text] [Related]
10. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials. Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583 [TBL] [Abstract][Full Text] [Related]
11. Influence of excitatory amino acid receptor subtypes on the electrophysiological activity of dopaminergic and nondopaminergic neurons in rat substantia nigra. Zhang J; Chiodo LA; Freeman AS J Pharmacol Exp Ther; 1994 Apr; 269(1):313-21. PubMed ID: 7513359 [TBL] [Abstract][Full Text] [Related]
12. Neuronal damage induced by beta-N-oxalylamino-L-alanine, in the rat hippocampus, can be prevented by a non-NMDA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Willis CL; Meldrum BS; Nunn PB; Anderton BH; Leigh PN Brain Res; 1993 Nov; 627(1):55-62. PubMed ID: 7507397 [TBL] [Abstract][Full Text] [Related]
13. N-methyl-D-aspartic acid biphasically regulates the biochemical and electrophysiological response of A10 dopamine neurons in the ventral tegmental area: in vivo microdialysis and in vitro electrophysiological studies. Wang T; O'Connor WT; Ungerstedt U; French ED Brain Res; 1994 Dec; 666(2):255-62. PubMed ID: 7882036 [TBL] [Abstract][Full Text] [Related]
14. Kainate excitotoxicity is mediated by AMPA- but not kainate-preferring receptors in embryonic rat hippocampal cultures. Ohno K; Okada M; Tsutsumi R; Kohara A; Yamaguchi T Neurochem Int; 1997 Nov; 31(5):715-22. PubMed ID: 9364457 [TBL] [Abstract][Full Text] [Related]
15. Pharmacological characterization of a GluR6 kainate receptor in cultured hippocampal neurons. Bleakman D; Ogden AM; Ornstein PL; Hoo K Eur J Pharmacol; 1999 Aug; 378(3):331-7. PubMed ID: 10493110 [TBL] [Abstract][Full Text] [Related]
17. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors. Christoffersen CL; Meltzer LT Neuroscience; 1995 Jul; 67(2):373-81. PubMed ID: 7545793 [TBL] [Abstract][Full Text] [Related]
18. Differential roles for NMDA and non-NMDA receptor subtypes in baroreceptor afferent integration in the nucleus of the solitary tract of the rat. Zhang J; Mifflin SW J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):733-45. PubMed ID: 9714856 [TBL] [Abstract][Full Text] [Related]
19. Dicarboxyphenylglycines antagonize AMPA- but not kainate-induced depolarizations in neonatal rat motoneurones. Thomas NK; Clayton P; Jane DE Eur J Pharmacol; 1997 Nov; 338(2):111-6. PubMed ID: 9455991 [TBL] [Abstract][Full Text] [Related]
20. Effects of nitric oxide availability on responses of spinal wide dynamic range neurons to excitatory amino acids. Budai D; Wilcox GL; Larson AA Eur J Pharmacol; 1995 May; 278(1):39-47. PubMed ID: 7545123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]