These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 7533903)

  • 1. Recognition of duplex DNA by RNA polynucleotides.
    McDonald CD; Maher LJ
    Nucleic Acids Res; 1995 Feb; 23(3):500-6. PubMed ID: 7533903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of RNAs that bind to duplex DNA at neutral pH.
    Soukup GA; Ellington AD; Maher LJ
    J Mol Biol; 1996 Jun; 259(2):216-28. PubMed ID: 8656424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exclusion of RNA strands from a purine motif triple helix.
    Semerad CL; Maher LJ
    Nucleic Acids Res; 1994 Dec; 22(24):5321-5. PubMed ID: 7529405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence specific thermodynamic and structural properties for DNA.RNA duplexes.
    Ratmeyer L; Vinayak R; Zhong YY; Zon G; Wilson WD
    Biochemistry; 1994 May; 33(17):5298-304. PubMed ID: 7513557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Interaction of topotecan, DNA topoisomerase I inhibitor, with double-stranded polydeoxyribonucleotides. 4. Topotecan binds preferably to the GC base pairs of DNA].
    Strel'tsov SA; Mikheĭkin AL; Grokhovskiĭ SL; Oleĭnikov VA; Kudelina IA; Zhuze AL
    Mol Biol (Mosk); 2002; 36(5):912-30. PubMed ID: 12391856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid screening of structurally selective ligand binding to nucleic acids.
    Ren J; Chaires JB
    Methods Enzymol; 2001; 340():99-108. PubMed ID: 11494877
    [No Abstract]   [Full Text] [Related]  

  • 7. Spectroscopic studies of chimeric DNA-RNA and RNA 29-base intramolecular triple helices.
    Liquier J; Taillandier E; Klinck R; Guittet E; Gouyette C; Huynh-Dinh T
    Nucleic Acids Res; 1995 May; 23(10):1722-8. PubMed ID: 7540286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA recognition by alternate strand triple helix formation: affinities of oligonucleotides for a site in the human p53 gene.
    Olivas WM; Maher LJ
    Biochemistry; 1994 Feb; 33(4):983-91. PubMed ID: 8305445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies.
    François JC; Saison-Behmoaras T; Hélène C
    Nucleic Acids Res; 1988 Dec; 16(24):11431-40. PubMed ID: 3211742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photochemically and chemically activatable antisense oligonucleotides: comparison of their reactivities towards DNA and RNA targets.
    Godard G; François JC; Duroux I; Asseline U; Chassignol M; Nguyen T; Hélène C; Saison-Behmoaras T
    Nucleic Acids Res; 1994 Nov; 22(22):4789-95. PubMed ID: 7527139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of the range of recognition sequences for triple helix formation by oligonucleotides containing guanines and thymines.
    Sun JS; De Bizemont T; Duval-Valentin G; Montenay-Garestier T; Hélène C
    C R Acad Sci III; 1991; 313(13):585-90. PubMed ID: 1782564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoglycoside binding in the major groove of duplex RNA: the thermodynamic and electrostatic forces that govern recognition.
    Jin E; Katritch V; Olson WK; Kharatisvili M; Abagyan R; Pilch DS
    J Mol Biol; 2000 Apr; 298(1):95-110. PubMed ID: 10756107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide.
    Takasugi M; Guendouz A; Chassignol M; Decout JL; Lhomme J; Thuong NT; Hélène C
    Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5602-6. PubMed ID: 2062839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High affinity binding of estrogen receptor to recombinant plasmids containing (dA-dC)n.(dG-dT)n sequences.
    Thomas T; Thomas TJ
    Cancer Res; 1989 Sep; 49(17):4734-9. PubMed ID: 2547515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counterion association with native and denatured nucleic acids: an experimental approach.
    Völker J; Klump HH; Manning GS; Breslauer KJ
    J Mol Biol; 2001 Jul; 310(5):1011-25. PubMed ID: 11501992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific artificial photo-induced endonucleases based on triple helix-forming oligonucleotides.
    Perrouault L; Asseline U; Rivalle C; Thuong NT; Bisagni E; Giovannangeli C; Le Doan T; Hélène C
    Nature; 1990 Mar; 344(6264):358-60. PubMed ID: 2156170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligonucleotides with novel, cationic backbone substituents: aminoethylphosphonates.
    Fathi R; Huang Q; Coppola G; Delaney W; Teasdale R; Krieg AM; Cook AF
    Nucleic Acids Res; 1994 Dec; 22(24):5416-24. PubMed ID: 7816633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of DNA oligonucleotides to sequences in the promoter of the human bc1-2 gene.
    Olivas WM; Maher LJ
    Nucleic Acids Res; 1996 May; 24(9):1758-64. PubMed ID: 8649997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural polymorphism of homopurine-homopyrimidine sequences at neutral pH.
    Kohwi Y; Kohwi-Shigematsu T
    J Mol Biol; 1993 Jun; 231(4):1090-101. PubMed ID: 8515467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation.
    Han H; Dervan PB
    Proc Natl Acad Sci U S A; 1993 May; 90(9):3806-10. PubMed ID: 7683407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.