BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 7534296)

  • 1. Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases.
    Takenaka I; Morin F; Seizinger BR; Kley N
    J Biol Chem; 1995 Mar; 270(10):5405-11. PubMed ID: 7534296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases.
    Hupp TR; Lane DP
    Cold Spring Harb Symp Quant Biol; 1994; 59():195-206. PubMed ID: 7587070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise characterisation of monoclonal antibodies to the C-terminal region of p53 protein using the PEPSCAN ELISA technique and a new non-radioactive gel shift assay.
    Pospísilová S; Brázda V; Amrichová J; Kamermeierová R; Palecek E; Vojtesek B
    J Immunol Methods; 2000 Apr; 237(1-2):51-64. PubMed ID: 10725451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2.
    Pospísilová S; Brázda V; Kucharíková K; Luciani MG; Hupp TR; Skládal P; Palecek E; Vojtesek B
    Biochem J; 2004 Mar; 378(Pt 3):939-47. PubMed ID: 14640983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein interactions at the carboxyl terminus of p53 result in the induction of its in vitro transactivation potential.
    Mundt M; Hupp T; Fritsche M; Merkle C; Hansen S; Lane D; Groner B
    Oncogene; 1997 Jul; 15(2):237-44. PubMed ID: 9244359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus.
    Shaw P; Freeman J; Bovey R; Iggo R
    Oncogene; 1996 Feb; 12(4):921-30. PubMed ID: 8632915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Murine p53 is phosphorylated within the PAb421 epitope by protein kinase C in vitro, but not in vivo, even after stimulation with the phorbol ester o-tetradecanoylphorbol 13-acetate.
    Milne DM; McKendrick L; Jardine LJ; Deacon E; Lord JM; Meek DW
    Oncogene; 1996 Jul; 13(1):205-11. PubMed ID: 8700548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of p53 binding to Holliday junctions and 3-cytosine bulges by phosphorylation events.
    Subramanian D; Griffith JD
    Biochemistry; 2005 Feb; 44(7):2536-44. PubMed ID: 15709766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric regulation of the thermostability and DNA binding activity of human p53 by specific interacting proteins. CRC Cell Transformation Group.
    Hansen S; Hupp TR; Lane DP
    J Biol Chem; 1996 Feb; 271(7):3917-24. PubMed ID: 8632013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1.
    Milne DM; Campbell LE; Campbell DG; Meek DW
    J Biol Chem; 1995 Mar; 270(10):5511-8. PubMed ID: 7890669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The carboxyl-terminal domain of the p53 protein regulates sequence-specific DNA binding through its nonspecific nucleic acid-binding activity.
    Bayle JH; Elenbaas B; Levine AJ
    Proc Natl Acad Sci U S A; 1995 Jun; 92(12):5729-33. PubMed ID: 7777576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific DNA binding by p53 is independent of mutation at serine 389, the casein kinase II site.
    Rolley N; Milner J
    Oncogene; 1994 Oct; 9(10):3067-70. PubMed ID: 8084615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of the cryptic DNA binding function of mutant forms of p53.
    Hupp TR; Meek DW; Midgley CA; Lane DP
    Nucleic Acids Res; 1993 Jul; 21(14):3167-74. PubMed ID: 8341590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein phosphatase 1 interacts with p53BP2, a protein which binds to the tumour suppressor p53.
    Helps NR; Barker HM; Elledge SJ; Cohen PT
    FEBS Lett; 1995 Dec; 377(3):295-300. PubMed ID: 8549741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding to the naturally occurring double p53 binding site of the Mdm2 promoter alleviates the requirement for p53 C-terminal activation.
    Kaku S; Iwahashi Y; Kuraishi A; Albor A; Yamagishi T; Nakaike S; Kulesz-Martin M
    Nucleic Acids Res; 2001 May; 29(9):1989-93. PubMed ID: 11328884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of DNA modified by antitumor cisplatin by "latent" and "active" protein p53.
    Fojta M; Pivonkova H; Brazdova M; Kovarova L; Palecek E; Pospisilova S; Vojtesek B; Kasparkova J; Brabec V
    Biochem Pharmacol; 2003 Apr; 65(8):1305-16. PubMed ID: 12694871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a distinct inhibitory factor in the regulation of p53 functional activity.
    Wiederschain D; Gu J; Yuan ZM
    J Biol Chem; 2001 Jul; 276(30):27999-8005. PubMed ID: 11382762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation studies on rat p53 using the baculovirus expression system. Manipulation of the phosphorylation state with okadaic acid and influence on DNA binding.
    Fuchs B; Hecker D; Scheidtmann KH
    Eur J Biochem; 1995 Mar; 228(3):625-39. PubMed ID: 7737156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of DNA binding and in vitro transcriptional activities dependent on the C terminus of P53 proteins.
    Kaku S; Albor A; Kulesz-Martin M
    Biochem Biophys Res Commun; 2001 Jan; 280(1):204-11. PubMed ID: 11162500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p53 Latency. C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences.
    Yakovleva T; Pramanik A; Kawasaki T; Tan-No K; Gileva I; Lindegren H; Langel U; Ekstrom TJ; Rigler R; Terenius L; Bakalkin G
    J Biol Chem; 2001 May; 276(19):15650-8. PubMed ID: 11279079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.