BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7535106)

  • 1. Analysis of multiple antigenic determinants of Clostridium perfringens enterotoxin as revealed by use of different synthetic peptides.
    Sugii S
    J Vet Med Sci; 1994 Dec; 56(6):1047-50. PubMed ID: 7535106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epitope analysis of staphylococcal enterotoxin A using different synthetic peptides.
    Hu DL; Imai A; Ono K; Sasaki S; Nakane A; Sugii S; Shinagawa K
    J Vet Med Sci; 1998 Sep; 60(9):993-6. PubMed ID: 9795898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of multiple antigenic determinants of the bovine conglutinin molecule using different synthetic peptides.
    Sugii S
    J Vet Med Sci; 1994 Dec; 56(6):1035-40. PubMed ID: 7535105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conjugated synthetic peptide corresponding to the C-terminal region of Clostridium perfringens type A enterotoxin elicits an enterotoxin-neutralizing antibody response in mice.
    Mietzner TA; Kokai-Kun JF; Hanna PC; McClane BA
    Infect Immun; 1992 Sep; 60(9):3947-51. PubMed ID: 1500207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping of functional regions of Clostridium perfringens type A enterotoxin.
    Hanna PC; Wieckowski EU; Mietzner TA; McClane BA
    Infect Immun; 1992 May; 60(5):2110-4. PubMed ID: 1373406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a fusion protein carrying antigenic determinants of enteric clostridial toxins.
    Belyi IF; Varfolomeeva NA
    FEMS Microbiol Lett; 2003 Aug; 225(2):325-9. PubMed ID: 12951260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region.
    Hanna PC; Mietzner TA; Schoolnik GK; McClane BA
    J Biol Chem; 1991 Jun; 266(17):11037-43. PubMed ID: 1645721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative and Highly Sensitive Detection of
    Neumann T; Krüger M; Weisemann J; Mahrhold S; Stern D; Dorner MB; Feraudet-Tarisse C; Pöhlmann C; Schulz K; Messelhäußer U; Rimek D; Gessler F; Elßner T; Simon S; Rummel A; Dorner BG
    Toxins (Basel); 2021 Apr; 13(4):. PubMed ID: 33917845
    [No Abstract]   [Full Text] [Related]  

  • 9. Development of Adjuvant-Free Bivalent Food Poisoning Vaccine by Augmenting the Antigenicity of
    Suzuki H; Hosomi K; Nasu A; Kondoh M; Kunisawa J
    Front Immunol; 2018; 9():2320. PubMed ID: 30356722
    [No Abstract]   [Full Text] [Related]  

  • 10. In silico design of a novel chimeric shigella IpaB fused to C terminal of clostridium perfringens enterotoxin as a vaccine candidate.
    Arabshahi S; Nayeri Fasaei B; Derakhshandeh A; Novinrooz A
    Bioengineered; 2018 Jan; 9(1):170-177. PubMed ID: 29091543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a bivalent food poisoning vaccine: augmented antigenicity of the C-terminus of Clostridium perfringens enterotoxin by fusion with the B subunit of Escherichia coli Shiga toxin 2.
    Hosomi K; Hinenoya A; Suzuki H; Nagatake T; Nishino T; Tojima Y; Hirata SI; Matsunaga A; Kondoh M; Yamasaki S; Kunisawa J
    Int Immunol; 2019 Feb; 31(2):91-100. PubMed ID: 30329068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of enzyme linked immunosorbent assay (ELISA) in the quantitation of Clostridium perfringens type A enterotoxin and antienterotoxin antibodies.
    Narayan KG; Genigeorgis C; Behymer D
    Int J Zoonoses; 1983 Dec; 10(2):105-10. PubMed ID: 6327556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometric analysis for enterotoxin exposed on Clostridium perfringens spores.
    Kusunoki H; Hu D; Piyankarage RH; Sugii S; Uemura T
    J Vet Med Sci; 1998 Dec; 60(12):1357-9. PubMed ID: 9879540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of Clostridium perfringens enterotoxin.
    McClane BA
    Toxicon; 1996; 34(11-12):1335-43. PubMed ID: 9027990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigenicity of amino-acid sequences from Clostridium difficile toxin B.
    Torres JF; Monath TP
    J Med Microbiol; 1996 Jun; 44(6):464-74. PubMed ID: 8636964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The safety of a mucosal vaccine using the C-terminal fragment of Clostridium perfringens enterotoxin.
    Suzuki H; Kakutani H; Kondoh M; Watari A; Yagi K
    Pharmazie; 2010 Oct; 65(10):766-9. PubMed ID: 21105580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridium perfringens enterotoxin-based protein engineering for the vaccine design and delivery system.
    Lan H; Hosomi K; Kunisawa J
    Vaccine; 2019 Sep; 37(42):6232-6239. PubMed ID: 31466706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin-3.
    Winkler L; Gehring C; Wenzel A; Müller SL; Piehl C; Krause G; Blasig IE; Piontek J
    J Biol Chem; 2009 Jul; 284(28):18863-72. PubMed ID: 19429681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synthetic peptide corresponding to the extracellular loop 2 region of claudin-4 protects against Clostridium perfringens enterotoxin in vitro and in vivo.
    Shrestha A; Robertson SL; Garcia J; Beingasser J; McClane BA; Uzal FA
    Infect Immun; 2014 Nov; 82(11):4778-88. PubMed ID: 25156725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of Clostridium perfringens enterotoxin with receptor claudins.
    Shrestha A; Uzal FA; McClane BA
    Anaerobe; 2016 Oct; 41():18-26. PubMed ID: 27090847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.