These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 7535203)

  • 1. Genesis and migration patterns of neurons forming the patch and matrix compartments of the rat striatum.
    Song DD; Harlan RE
    Brain Res Dev Brain Res; 1994 Dec; 83(2):233-45. PubMed ID: 7535203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum.
    Rymar VV; Sasseville R; Luk KC; Sadikot AF
    J Comp Neurol; 2004 Feb; 469(3):325-39. PubMed ID: 14730585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurogenesis in the mammalian neostriatum and nucleus accumbens: parvalbumin-immunoreactive GABAergic interneurons.
    Sadikot AF; Sasseville R
    J Comp Neurol; 1997 Dec; 389(2):193-211. PubMed ID: 9416916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern formation in the mammalian forebrain: striatal patch and matrix neurons intermix prior to compartment formation.
    Krushel LA; Fishell G; van der Kooy D
    Eur J Neurosci; 1995 Jun; 7(6):1210-9. PubMed ID: 7582094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Striatal cholinergic interneurons: birthdates predict compartmental localization.
    van Vulpen EH; van der Kooy D
    Brain Res Dev Brain Res; 1998 Jul; 109(1):51-8. PubMed ID: 9706390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogeny of the proenkephalin system in the rat corpus striatum: its relationship to dopaminergic innervation and transient compartmental expression.
    Song DD; Harlan RE
    Neuroscience; 1993 Feb; 52(4):883-909. PubMed ID: 8095712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern of corticostriatal innervation in organotypic cocultures is dependent on the age of the cortical tissue.
    Snyder-Keller A
    Exp Neurol; 2004 Feb; 185(2):262-71. PubMed ID: 14736507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The striatal mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum.
    Martin LJ; Hadfield MG; Dellovade TL; Price DL
    Neuroscience; 1991; 43(2-3):397-417. PubMed ID: 1681464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of striatal patch/matrix organization after prenatal methylazoxymethanol: a combined immunocytochemical and bromo-deoxy-uridine birthdating study.
    Snyder-Keller AM
    Neuroscience; 1995 Oct; 68(3):751-63. PubMed ID: 8577371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of striatal patch/matrix organization in organotypic co-cultures of perinatal striatum, cortex and substantia nigra.
    Snyder-Keller A; Costantini LC; Graber DJ
    Neuroscience; 2001; 103(1):97-109. PubMed ID: 11311790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern formation in the striatum: neurons with early projections to the substantia nigra survive the cell death period.
    Fishell G; van der Kooy D
    J Comp Neurol; 1991 Oct; 312(1):33-42. PubMed ID: 1660493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum.
    Kubota Y; Kawaguchi Y
    J Comp Neurol; 1993 Jun; 332(4):499-513. PubMed ID: 8349845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the precerebellar nuclei in the rat: IV. The anterior precerebellar extramural migratory stream and the nucleus reticularis tegmenti pontis and the basal pontine gray.
    Altman J; Bayer SA
    J Comp Neurol; 1987 Mar; 257(4):529-52. PubMed ID: 3693597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal influences of nigral cells and striatal patch neurons in dissociated co-cultures.
    Aronica E; Costantini LC; Snyder-Keller A
    J Neurosci Res; 1996 Jun; 44(6):540-50. PubMed ID: 8794945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurogenesis of cuneothalamic neurons and NO-containing neurons in the cuneate nucleus of the rat.
    Wang TJ; Lue JH; Wu CH; Shieh JY; Wen CY
    Exp Brain Res; 2002 Feb; 142(3):327-34. PubMed ID: 11819040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient compartmental expression of a family of protein tyrosine phosphatases in the developing striatum.
    Raghunathan A; Matthews GA; Lombroso PJ; Naegele JR
    Brain Res Dev Brain Res; 1996 Feb; 91(2):190-9. PubMed ID: 8852369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern formation in the developing mammalian forebrain: selective adhesion of early but not late postmitotic cortical and striatal neurons within forebrain reaggregate cultures.
    Krushel LA; van der Kooy D
    Dev Biol; 1993 Jul; 158(1):145-62. PubMed ID: 8330669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticostriatal innervation of the patch and matrix in the rat neostriatum.
    Kincaid AE; Wilson CJ
    J Comp Neurol; 1996 Oct; 374(4):578-92. PubMed ID: 8910736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenatal development of the rodent rostral migratory stream.
    Pencea V; Luskin MB
    J Comp Neurol; 2003 Sep; 463(4):402-18. PubMed ID: 12836176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal expression gradients of the carbohydrate antigen (CD15) (Lewis X) during development of the human basal ganglia.
    Mai JK; Krajewski S; Reifenberger G; Genderski B; Lensing-Höhn S; Ashwell KW
    Neuroscience; 1999; 88(3):847-58. PubMed ID: 10363822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.