These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7535656)

  • 1. A major role for calcium-dependent potassium current in action potential repolarization in adrenal chromaffin cells.
    Pancrazio JJ; Johnson PA; Lynch C
    Brain Res; 1994 Dec; 668(1-2):246-51. PubMed ID: 7535656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivating and noninactivating Ca(2+)- and voltage-dependent K+ current in rat adrenal chromaffin cells.
    Solaro CR; Prakriya M; Ding JP; Lingle CJ
    J Neurosci; 1995 Sep; 15(9):6110-23. PubMed ID: 7545225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A patch-clamp study of K(+)-channel activity in bovine isolated tracheal smooth muscle cells.
    Green KA; Foster RW; Small RC
    Br J Pharmacol; 1991 Apr; 102(4):871-8. PubMed ID: 1713110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resting membrane potential and potassium currents in cultured parasympathetic neurones from rat intracardiac ganglia.
    Xu ZJ; Adams DJ
    J Physiol; 1992 Oct; 456():405-24. PubMed ID: 1284080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis.
    Wang G; Thorn P; Lemos JR
    J Physiol; 1992 Nov; 457():47-74. PubMed ID: 1284313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological role of Ca(2+)-activated and voltage-dependent K+ currents in rabbit coronary myocytes.
    Leblanc N; Wan X; Leung PM
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1523-37. PubMed ID: 7517630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different contributions of calcium channel subtypes to electrical excitability of chromaffin cells in rat adrenal slices.
    Albiñana E; Segura-Chama P; Baraibar AM; Hernández-Cruz A; Hernández-Guijo JM
    J Neurochem; 2015 May; 133(4):511-21. PubMed ID: 25683177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guinea pig visceral C-fiber neurons are diverse with respect to the K+ currents involved in action-potential repolarization.
    Christian EP; Togo J; Naper KE
    J Neurophysiol; 1994 Feb; 71(2):561-74. PubMed ID: 8176425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two outward K+ currents in bovine pigmented ciliary epithelial cells: IK(Ca) and IK(V).
    Jacob TJ
    Am J Physiol; 1991 Dec; 261(6 Pt 1):C1055-62. PubMed ID: 1722643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneuron soma.
    Mills JD; Pitman RM
    J Neurophysiol; 1999 May; 81(5):2253-66. PubMed ID: 10322064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of outward potassium currents in the action potentials of guinea pig ureteral myocytes.
    Sui JL; Kao CY
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C962-72. PubMed ID: 9316418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in the ensemble of potassium currents underlying resonance in turtle hair cells.
    Goodman MB; Art JJ
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):395-412. PubMed ID: 8961183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones.
    Zhang L; McBain CJ
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):661-72. PubMed ID: 8576856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of voltage-dependent potassium currents in rat pyramidal neurons acutely isolated from hippocampal regions CA1 and CA3.
    Klee R; Ficker E; Heinemann U
    J Neurophysiol; 1995 Nov; 74(5):1982-95. PubMed ID: 8592191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide modulation of calcium-activated potassium channels in postganglionic neurones of avian cultured ciliary ganglia.
    Cetiner M; Bennett MR
    Br J Pharmacol; 1993 Nov; 110(3):995-1002. PubMed ID: 7905346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells.
    Thompson RJ; Nurse CA
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):421-34. PubMed ID: 9763632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.