BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 753595)

  • 1. A freeze-etching and replication study of wall deposition in elongating plant cells.
    Vian B; Mueller S; Brown RM
    Cytobios; 1978; 22(85):7-15. PubMed ID: 753595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface architecture of the plant cell: biogenesis of the cell wall, with special emphasis on the role of the plasma membrane in cellulose biosynthesis.
    Montezinos D; Brown M
    J Supramol Struct; 1976; 5(3):277-90. PubMed ID: 1024121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer cell wall architecture: a contribution towards understanding localized wall deposition.
    Talbot MJ; Offler CE; McCurdy DW
    Protoplasma; 2002 May; 219(3-4):197-209. PubMed ID: 12099220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations with cytochemistry and ultracryotomy on the fine structure of the expanding walls in actively elongating plant cells.
    Roland JC; Vian B; Reis D
    J Cell Sci; 1975 Nov; 19(2):239-59. PubMed ID: 1202041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfibril orientation in plant cell walls.
    Chafe SC; Wardrop AB
    Planta; 1970 Mar; 92(1):13-24. PubMed ID: 24500125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils.
    Thimm JC; Burritt DJ; Ducker WA; Melton LD
    Planta; 2000 Dec; 212(1):25-32. PubMed ID: 11219580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-etching and freeze-fracture structural features of cell envelopes in mycobacteria and leprosy derived corynebacteria.
    Benedetti EL; Dunia I; Ludosky MA; Nguyen VM; Dang DT; Rastogi N; David HL
    Acta Leprol; 1984; 2(2-4):237-48. PubMed ID: 6398584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements.
    Roberts AW; Frost AO; Roberts EM; Haigler CH
    Protoplasma; 2004 Dec; 224(3-4):217-29. PubMed ID: 15614483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical microtubules form a dynamic mechanism that helps regulate the direction of plant growth.
    Lloyd CW; Himmelspach R; Nick P; Wymer C
    Gravit Space Biol Bull; 2000 Jun; 13(2):59-65. PubMed ID: 11543282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.).
    Chen D; Melton LD; McGillivray DJ; Ryan TM; Harris PJ
    Planta; 2019 Dec; 250(6):1819-1832. PubMed ID: 31463558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of coenocytes for freeze-etching.
    Ellis EA; Mullins JT
    Stain Technol; 1975 Jul; 50(4):245-50. PubMed ID: 1188985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell wall biogenesis in Oocystis: experimental alteration of microfibril assembly and orientation.
    Montezinos D; Brown RM
    Cytobios; 1978; 23(90):119-39. PubMed ID: 114359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organization of the cell wall and cross wall of Staphylococcus aureus after ultracryotomy and freeze-etching.
    Nagayama A; Iida K; Koike M
    J Electron Microsc (Tokyo); 1978; 27(2):103-9. PubMed ID: 690558
    [No Abstract]   [Full Text] [Related]  

  • 14. A freeze-fracture study on the differentiation of Golgi and plasma membranes in plant cells.
    Volkmann D
    Eur J Cell Biol; 1983 May; 30(2):258-65. PubMed ID: 11596500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in understanding the role of microtubules in plant cells.
    Wasteneys GO
    Curr Opin Plant Biol; 2004 Dec; 7(6):651-60. PubMed ID: 15491913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The maize primary cell wall microfibril: a new model derived from direct visualization.
    Ding SY; Himmel ME
    J Agric Food Chem; 2006 Feb; 54(3):597-606. PubMed ID: 16448156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants.
    Mueller SC; Brown RM
    J Cell Biol; 1980 Feb; 84(2):315-26. PubMed ID: 7189755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane.
    Lindeboom J; Mulder BM; Vos JW; Ketelaar T; Emons AM
    J Microsc; 2008 Aug; 231(2):192-200. PubMed ID: 18778417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Spheroplasts of Proteus studied by scanning electron microscopy, freeze etching and ultrathin sections].
    Kats LN; Glazacheva LE; Ratner EN
    Mikrobiologiia; 1976; 45(6):1012-7. PubMed ID: 796629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems.
    Craig S; Staehelin LA
    Eur J Cell Biol; 1988 Apr; 46(1):81-93. PubMed ID: 3396590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.