BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7536602)

  • 1. The role of major histocompatibility complex genes in myasthenia gravis and experimental autoimmune myasthenia gravis pathogenesis.
    Kaul R; Shenoy M; Christadoss P
    Adv Neuroimmunol; 1994; 4(4):387-402. PubMed ID: 7536602
    [No Abstract]   [Full Text] [Related]  

  • 2. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis.
    Christadoss P; Lindstrom JM; Melvold RW; Talal N
    Immunogenetics; 1985; 21(1):33-8. PubMed ID: 3917973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T cell receptor gene regulation of experimental autoimmune myasthenia gravis.
    Wu B; Shenoy M; Christadoss P
    Adv Neuroimmunol; 1994; 4(4):433-45. PubMed ID: 7536604
    [No Abstract]   [Full Text] [Related]  

  • 4. The immunogenetics of myasthenia gravis, multiple sclerosis and their animal models.
    Tournier-Lasserve E; Bach JF
    J Neuroimmunol; 1993 Sep; 47(2):103-14. PubMed ID: 8370764
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular immunopathogenesis of experimental autoimmune myasthenia gravis.
    Christadoss P; Shenoy M
    Reg Immunol; 1992; 4(5):314-20. PubMed ID: 1337839
    [No Abstract]   [Full Text] [Related]  

  • 6. Immune response gene control of lymphocyte proliferation induced by acetylcholine receptor-specific helper factor derived from lymphocytes of myasthenic mice.
    Christadoss P; Lindstrom JM; Talal N; Duvic CR; Kalantri A; Shenoy M
    J Immunol; 1986 Sep; 137(6):1845-9. PubMed ID: 2943805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of a mouse model of myasthenia gravis which mimics human myasthenia gravis pathogenesis for immune intervention.
    Christadoss P; Kaul R; Shenoy M; Goluszko E
    Adv Exp Med Biol; 1995; 383():195-9. PubMed ID: 8644502
    [No Abstract]   [Full Text] [Related]  

  • 8. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes.
    Infante AJ; Thompson PA; Krolick KA; Wall KA
    J Immunol; 1991 May; 146(9):2977-82. PubMed ID: 1707927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of autoimmune myasthenia gravis: the multifaceted contribution of the HLA complex.
    Vandiedonck C; Giraud M; Garchon HJ
    J Autoimmun; 2005; 25 Suppl():6-11. PubMed ID: 16260117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linkage between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental myasthenia gravis.
    Berman PW; Patrick J
    J Exp Med; 1980 Sep; 152(3):507-20. PubMed ID: 6774045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic control of experimental autoimmune myasthenia gravis in mice. I. Lymphocyte proliferative response to acetylcholine receptors is under H-2-linked Ir gene control.
    Christadoss P; Lennon VA; David C
    J Immunol; 1979 Dec; 123(6):2540-3. PubMed ID: 115916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunogenetic mechanisms in myasthenia gravis.
    Steinman L
    Prog Brain Res; 1990; 84():117-24. PubMed ID: 2267289
    [No Abstract]   [Full Text] [Related]  

  • 13. Presentation of endogenous acetylcholine receptor epitope by an MHC class II-transfected human muscle cell line to a specific CD4+ T cell clone from a myasthenia gravis patient.
    Baggi F; Nicolle M; Vincent A; Matsuo H; Willcox N; Newsom-Davis J
    J Neuroimmunol; 1993 Jul; 46(1-2):57-65. PubMed ID: 7689595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic control of experimental autoimmune myasthenia gravis in mice. III. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors.
    Christadoss P; Lennon VA; Krco CJ; David CS
    J Immunol; 1982 Mar; 128(3):1141-4. PubMed ID: 6799570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular aspects of HLA class II and some autoimmune diseases.
    Lepage V; Lamm LU; Charron D
    Eur J Immunogenet; 1993 Jun; 20(3):153-64. PubMed ID: 8338813
    [No Abstract]   [Full Text] [Related]  

  • 16. Both CD4+ and CD8+ T cells are essential to induce experimental autoimmune myasthenia gravis.
    Zhang GX; Xiao BG; Bakhiet M; van der Meide P; Wigzell H; Link H; Olsson T
    J Exp Med; 1996 Aug; 184(2):349-56. PubMed ID: 8760788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the alpha subunits of Torpedo californica and murine acetylcholine receptors.
    Bellone M; Ostlie N; Lei S; Conti-Tronconi BM
    Eur J Immunol; 1991 Oct; 21(10):2303-10. PubMed ID: 1680694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor.
    Bellone M; Ostlie N; Lei SJ; Wu XD; Conti-Tronconi BM
    J Immunol; 1991 Sep; 147(5):1484-91. PubMed ID: 1715360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential use of a T cell receptor V beta gene by acetylcholine receptor reactive T cells from myasthenia gravis-susceptible mice.
    Infante AJ; Levcovitz H; Gordon V; Wall KA; Thompson PA; Krolick KA
    J Immunol; 1992 Jun; 148(11):3385-90. PubMed ID: 1375242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping myasthenia gravis-associated T cell epitopes on human acetylcholine receptors in HLA transgenic mice.
    Yang H; Goluszko E; David C; Okita DK; Conti-Fine B; Chan TS; Poussin MA; Christadoss P
    J Clin Invest; 2002 Apr; 109(8):1111-20. PubMed ID: 11956249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.