BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7536810)

  • 1. Exacerbation of NMDA, AMPA, and L-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate.
    Greene JG; Greenamyre JT
    J Neurochem; 1995 May; 64(5):2332-8. PubMed ID: 7536810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the excitotoxic potential of the reversible succinate dehydrogenase inhibitor malonate.
    Greene JG; Greenamyre JT
    J Neurochem; 1995 Jan; 64(1):430-6. PubMed ID: 7528265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of membrane potential modulates malonate-induced striatal excitotoxicity in vivo.
    Greene JG; Greenamyre JT
    J Neurochem; 1996 Feb; 66(2):637-43. PubMed ID: 8592134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors.
    Christoffersen CL; Meltzer LT
    Neuroscience; 1995 Jul; 67(2):373-81. PubMed ID: 7545793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal damage induced by beta-N-oxalylamino-L-alanine, in the rat hippocampus, can be prevented by a non-NMDA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline.
    Willis CL; Meldrum BS; Nunn PB; Anderton BH; Leigh PN
    Brain Res; 1993 Nov; 627(1):55-62. PubMed ID: 7507397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrastriatal injections of the succinate dehydrogenase inhibitor, malonate, cause a rise in extracellular amino acids that is blocked by MK-801.
    Messam CA; Greene JG; Greenamyre JT; Robinson MB
    Brain Res; 1995 Jul; 684(2):221-4. PubMed ID: 7583227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy.
    Potschka H; Löscher W; Wlaź P; Behl B; Hofmann HP; Treiber HJ; Szabo L
    Br J Pharmacol; 1998 Nov; 125(6):1258-66. PubMed ID: 9863655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domoic acid neurotoxicity in cultured cerebellar granule neurons is mediated predominantly by NMDA receptors that are activated as a consequence of excitatory amino acid release.
    Berman FW; Murray TF
    J Neurochem; 1997 Aug; 69(2):693-703. PubMed ID: 9231729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of succinate dehydrogenase by malonic acid produces an "excitotoxic" lesion in rat striatum.
    Greene JG; Porter RH; Eller RV; Greenamyre JT
    J Neurochem; 1993 Sep; 61(3):1151-4. PubMed ID: 8360680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effects of chronic exposure to subthreshold concentrations of quinolinic acid and malonate in the rat striatum.
    Bazzett TJ; Falik RC; Becker JB; Albin RL
    Brain Res; 1996 Apr; 718(1-2):228-32. PubMed ID: 8773793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical infarction.
    Xue D; Huang ZG; Barnes K; Lesiuk HJ; Smith KE; Buchan AM
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):251-61. PubMed ID: 7509339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of thiopental and propofol on NMDA- and AMPA-mediated glutamate excitotoxicity.
    Zhu H; Cottrell JE; Kass IS
    Anesthesiology; 1997 Oct; 87(4):944-51. PubMed ID: 9357898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of NBQX on the distal and local toxicity of glutamate agonists administered intra-hippocampally.
    Lees GJ; Leong W
    Brain Res; 1993 Nov; 628(1-2):1-7. PubMed ID: 7508807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline protects against both AMPA and kainate-induced lesions in rat striatum in vivo.
    Massieu L; Tapia R
    Neuroscience; 1994 Apr; 59(4):931-8. PubMed ID: 7520137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures.
    Kristensen BW; Noraberg J; Zimmer J
    Brain Res; 2001 Oct; 917(1):21-44. PubMed ID: 11602227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of brain to AMPA induced excitotoxicity transiently peaks during early postnatal development.
    McDonald JW; Trescher WH; Johnston MV
    Brain Res; 1992 Jun; 583(1-2):54-70. PubMed ID: 1380402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroprotective effects of creatine administration against NMDA and malonate toxicity.
    Malcon C; Kaddurah-Daouk R; Beal MF
    Brain Res; 2000 Mar; 860(1-2):195-8. PubMed ID: 10727643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the glutamate receptors mediating release of somatostatin from cultured hippocampal neurons.
    Fontana G; De Bernardi R; Ferro F; Gemignani A; Raiteri M
    J Neurochem; 1996 Jan; 66(1):161-8. PubMed ID: 8522949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of decahydroisoquinoline-3-carboxylic acid monohydrate, a novel AMPA receptor antagonist, on glutamate-induced CA2+ responses and neurotoxicity in rat cortical and cerebellar granule neurons.
    Liljequist S; Cebers G; Kalda A
    Biochem Pharmacol; 1995 Nov; 50(11):1761-74. PubMed ID: 8615854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabotropic and ionotropic excitatory amino acid receptor agonists induce different behavioral effects in mice.
    Laudrup P; Klitgaard H
    Eur J Pharmacol; 1993 Nov; 250(1):15-22. PubMed ID: 7509749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.