These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7537045)

  • 1. Detection of dairy Leuconostoc strains using the polymerase chain reaction.
    Ward LJ; Brown JC; Davey GP
    Lett Appl Microbiol; 1995 Apr; 20(4):204-8. PubMed ID: 7537045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Leuconostoc populations in mixed dairy starter cultures using fluorescence in situ hybridization.
    Olsen KN; Brockmann E; Molin S
    J Appl Microbiol; 2007 Oct; 103(4):855-63. PubMed ID: 17897187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Carnobacterium spp. and Leuconostoc spp. in meat by genus-specific 16S rRNA probes.
    Nissen H; Holck A; Dainty RH
    Lett Appl Microbiol; 1994 Sep; 19(3):165-8. PubMed ID: 7522472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequencing-independent method to generate oligonucleotide probes targeting a variable region in bacterial 16S rRNA by PCR with detachable primers.
    Bertilsson S; Cavanaugh CM; Polz MF
    Appl Environ Microbiol; 2002 Dec; 68(12):6077-86. PubMed ID: 12450831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex PCR-based detection and identification of Leuconostoc species.
    Lee HJ; Park SY; Kim J
    FEMS Microbiol Lett; 2000 Dec; 193(2):243-7. PubMed ID: 11111031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis.
    Vancanneyt M; Zamfir M; De Wachter M; Cleenwerck I; Hoste B; Rossi F; Dellaglio F; De Vuyst L; Swings J
    Int J Syst Evol Microbiol; 2006 Jan; 56(Pt 1):213-6. PubMed ID: 16403889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligonucleotide probes for Bordetella bronchiseptica based on 16S ribosomal RNA sequences.
    Taneda A; Futo S; Mitsuse S; Seto Y; Okada M; Sakano T
    Vet Microbiol; 1994 Dec; 42(4):297-305. PubMed ID: 9133055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct application to dairy foods of a Listeria-specific oligonucleotide probe to 16S rRNA.
    Brooks JL; Back JP; Kroll RG
    Int J Food Microbiol; 1992 Aug; 16(4):303-12. PubMed ID: 1280986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of PCR-based hybridization protocol for identification of streptococcal species.
    Bentley RW; Leigh JA
    J Clin Microbiol; 1995 May; 33(5):1296-301. PubMed ID: 7542267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Profiling of
    Kaur J; Sharma A; Lee S; Park YS
    J Microbiol Biotechnol; 2017 Oct; 27(10):1778-1782. PubMed ID: 28813779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of specific rRNA-derived oligonucleotide probes for Haemophilus ducreyi, the causative agent of chancroid.
    Rossau R; Duhamel M; Jannes G; Decourt JL; Van Heuverswyn H
    J Gen Microbiol; 1991 Feb; 137(2):277-85. PubMed ID: 1707945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of species-specific oligonucleotide probes to detect Mycoplasma gallisepticum, M. synoviae, and M. iowae PCR amplification products.
    García M; Jackwood MW; Head M; Levisohn S; Kleven SH
    J Vet Diagn Invest; 1996 Jan; 8(1):56-63. PubMed ID: 9026082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Staphylococcus epidermidis using a 16S rRNA-directed oligonucleotide probe.
    Zakrzewska-Czerwińska J; Gaszewska-Mastalarz A; Pulverer G; Mordarski M
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):51-8. PubMed ID: 1282487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the large subunit rRNA genes and their flanking regions of Leuconostocs.
    Nour M
    Can J Microbiol; 1998 Sep; 44(9):807-18. PubMed ID: 9851024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligonucleotide probes complementary to 16S rRNA for rapid detection of mycoplasma contamination in cell cultures.
    Mattsson JG; Johansson KE
    FEMS Microbiol Lett; 1993 Mar; 107(2-3):139-44. PubMed ID: 7682525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection by PCR and differentiation by restriction fragment length polymorphism of Acholeplasma, Spiroplasma, Mycoplasma, and Ureaplasma, based upon 16S rRNA genes.
    Deng S; Hiruki C; Robertson JA; Stemke GW
    PCR Methods Appl; 1992 Feb; 1(3):202-4. PubMed ID: 1282069
    [No Abstract]   [Full Text] [Related]  

  • 17. Phylogenetic relationships of nonaxenic filamentous cyanobacterial strains based on 16S rRNA sequence analysis.
    Nelissen B; De Baere R; Wilmotte A; De Wachter R
    J Mol Evol; 1996 Feb; 42(2):194-200. PubMed ID: 8919871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of specific and rapid detection of bacterial pathogens in dairy products by PCR.
    Chotár M; Vidová B; Godány A
    Folia Microbiol (Praha); 2006; 51(6):639-46. PubMed ID: 17455804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization.
    Mikš-Krajnik M; Babuchowski A
    Lett Appl Microbiol; 2014 Sep; 59(3):320-7. PubMed ID: 24814284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteroduplex structures in 16S-23S rRNA intergenic transcribed spacer PCR products reveal ribosomal interoperonic polymorphisms within single Frankia strains.
    Gtari M; Brusetti L; Cherif A; Boudabous A; Daffonchio D
    J Appl Microbiol; 2007 Oct; 103(4):1031-40. PubMed ID: 17897207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.