BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7537090)

  • 1. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase.
    Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E
    Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template.
    Fisher TS; Darden T; Prasad VR
    J Virol; 2003 May; 77(10):5837-45. PubMed ID: 12719577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the active site steric flexibility of HIV-1 reverse transcriptase: different constraints for DNA- versus RNA-templated synthesis.
    Silverman AP; Garforth SJ; Prasad VR; Kool ET
    Biochemistry; 2008 Apr; 47(16):4800-7. PubMed ID: 18366188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides.
    Vastmans K; Froeyen M; Kerremans L; Pochet S; Herdewijn P
    Nucleic Acids Res; 2001 Aug; 29(15):3154-63. PubMed ID: 11470872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation of DNA replication by DNA polymerases from primers forming a triple helix.
    Rocher C; Dalibart R; Letellier T; Précigoux G; Lestienne P
    Nucleic Acids Res; 2001 Aug; 29(16):3320-6. PubMed ID: 11504869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycobacterial DNA polymerase I: activities and crystal structures of the POL domain as apoenzyme and in complex with a DNA primer-template and of the full-length FEN/EXO-POL enzyme.
    Ghosh S; Goldgur Y; Shuman S
    Nucleic Acids Res; 2020 Apr; 48(6):3165-3180. PubMed ID: 32034423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of molecular manipulation in residue 114 of human immunodeficiency virus type-1 reverse transcriptase on dNTP substrate binding and viral replication.
    Van Cor-Hosmer SK; Daddacha W; Kelly Z; Tsurumi A; Kennedy EM; Kim B
    Virology; 2012 Jan; 422(2):393-401. PubMed ID: 22153297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of kinetic intermediate states of HIV-1 reverse transcriptase DNA synthesis.
    Vergara S; Zhou X; Santiago U; Conway JF; Sluis-Cremer N; Calero G
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions.
    Götte M; Rausch JW; Marchand B; Sarafianos S; Le Grice SF
    Biochim Biophys Acta; 2010 May; 1804(5):1202-12. PubMed ID: 19665597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse transcriptases can clamp together nucleic acids strands with two complementary bases at their 3'-termini for initiating DNA synthesis.
    Oz-Gleenberg I; Herschhorn A; Hizi A
    Nucleic Acids Res; 2011 Feb; 39(3):1042-53. PubMed ID: 20876692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing Conformational States of the Finger and Thumb Subdomains of HIV-1 Reverse Transcriptase Using Double Electron-Electron Resonance Electron Paramagnetic Resonance Spectroscopy.
    Schmidt T; Tian L; Clore GM
    Biochemistry; 2018 Feb; 57(5):489-493. PubMed ID: 29251492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of DNA Polymerase Noncovalent Kinetic Transitions by Divalent Cations.
    Dahl JM; Lieberman KR; Wang H
    J Biol Chem; 2016 Mar; 291(12):6456-70. PubMed ID: 26797125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A small post-translocation energy bias aids nucleotide selection in T7 RNA polymerase transcription.
    Yu J; Oster G
    Biophys J; 2012 Feb; 102(3):532-41. PubMed ID: 22325276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative structural biology studies of HIV-1 reverse transcriptase binding to a high-affinity DNA aptamer.
    Tuske S; Zheng J; Olson ED; Ruiz FX; Pascal BD; Hoang A; Bauman JD; Das K; DeStefano JJ; Musier-Forsyth K; Griffin PR; Arnold E
    Curr Res Struct Biol; 2020; 2():116-129. PubMed ID: 33870216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases.
    Berman AJ; Kamtekar S; Goodman JL; Lázaro JM; de Vega M; Blanco L; Salas M; Steitz TA
    EMBO J; 2007 Jul; 26(14):3494-505. PubMed ID: 17611604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time Course Analysis of Enzyme-Catalyzed DNA Polymerization.
    Rentergent J; Driscoll MD; Hay S
    Biochemistry; 2016 Oct; 55(39):5622-5634. PubMed ID: 27611994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of the translocation step in DNA replication by DNA polymerase I: a computer simulation analysis.
    Golosov AA; Warren JJ; Beese LS; Karplus M
    Structure; 2010 Jan; 18(1):83-93. PubMed ID: 20152155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereochemical control of DNA biosynthesis.
    Sosunov VV; Santamaria F; Victorova LS; Gosselin G; Rayner B; Krayevsky AA
    Nucleic Acids Res; 2000 Mar; 28(5):1170-5. PubMed ID: 10666459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abundant non-canonical dUTP found in primary human macrophages drives its frequent incorporation by HIV-1 reverse transcriptase.
    Kennedy EM; Daddacha W; Slater R; Gavegnano C; Fromentin E; Schinazi RF; Kim B
    J Biol Chem; 2011 Jul; 286(28):25047-55. PubMed ID: 21454906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential structures provide insights into the fidelity of RNA replication.
    Ferrer-Orta C; Arias A; Pérez-Luque R; Escarmís C; Domingo E; Verdaguer N
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9463-8. PubMed ID: 17517631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.