These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7537262)

  • 1. The ability of membrane potential dyes and calcafluor white to distinguish between viable and non-viable bacteria.
    Mason DJ; Lopéz-Amorós R; Allman R; Stark JM; Lloyd D
    J Appl Bacteriol; 1995 Mar; 78(3):309-15. PubMed ID: 7537262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol.
    López-Amorós R; Comas J; Vives-Rego J
    Appl Environ Microbiol; 1995 Jul; 61(7):2521-6. PubMed ID: 7618864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the effects of gramicidin, formaldehyde, and surfactants on Escherichia coli by flow cytometry using nucleic acid and membrane potential dyes.
    Comas J; Vives-Rego J
    Cytometry; 1997 Sep; 29(1):58-64. PubMed ID: 9298812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC.
    López-Amorós R; Castel S; Comas-Riu J; Vives-Rego J
    Cytometry; 1997 Dec; 29(4):298-305. PubMed ID: 9415412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow cytometric investigation of filamentation, membrane patency, and membrane potential in Escherichia coli following ciprofloxacin exposure.
    Wickens HJ; Pinney RJ; Mason DJ; Gant VA
    Antimicrob Agents Chemother; 2000 Mar; 44(3):682-7. PubMed ID: 10681338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity of Escherichia coli population by respiratory activity and membrane potential of cells during growth and long-term starvation.
    Rezaeinejad S; Ivanov V
    Microbiol Res; 2011 Feb; 166(2):129-35. PubMed ID: 20171858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the suitability of bis-(1,3-dibutylbarbituric acid) trimethine oxonol, (diBA-C4(3)-), for the flow cytometric assessment of bacterial viability.
    Deere D; Porter J; Edwards C; Pickup R
    FEMS Microbiol Lett; 1995 Aug; 130(2-3):165-9. PubMed ID: 7649437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid assessment of bacterial viability by flow cytometry.
    Diaper JP; Tither K; Edwards C
    Appl Microbiol Biotechnol; 1992 Nov; 38(2):268-72. PubMed ID: 1283525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid assessment of antibiotic effects on Escherichia coli by bis-(1,3-dibutylbarbituric acid) trimethine oxonol and flow cytometry.
    Jepras RI; Paul FE; Pearson SC; Wilkinson MJ
    Antimicrob Agents Chemother; 1997 Sep; 41(9):2001-5. PubMed ID: 9303401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online monitoring of Escherichia coli ghost production.
    Haidinger W; Szostak MP; Jechlinger W; Lubitz W
    Appl Environ Microbiol; 2003 Jan; 69(1):468-74. PubMed ID: 12514029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of an oxonol dye in combination with confocal laser scanning microscopy to monitor damage to Staphylococcus aureus cells during colonisation of silver-coated vascular grafts.
    Strathmann M; Wingender J
    Int J Antimicrob Agents; 2004 Sep; 24(3):234-40. PubMed ID: 15325426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual fluorochrome flow cytometric assessment of yeast viability.
    Hernlem B; Hua SS
    Curr Microbiol; 2010 Jul; 61(1):57-63. PubMed ID: 20049598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration procedures for the quantitative determination of membrane potential in human cells using anionic dyes.
    Klapperstück T; Glanz D; Hanitsch S; Klapperstück M; Markwardt F; Wohlrab J
    Cytometry A; 2013 Jul; 83(7):612-26. PubMed ID: 23650268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence monitoring of antibiotic-induced bacterial damage using flow cytometry.
    Suller MT; Lloyd D
    Cytometry; 1999 Mar; 35(3):235-41. PubMed ID: 10082304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells.
    Konrad KR; Hedrich R
    Plant J; 2008 Jul; 55(1):161-73. PubMed ID: 18363788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometry of bacterial membrane potential and permeability.
    Shapiro HM
    Methods Mol Med; 2008; 142():175-86. PubMed ID: 18437314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid estimation of bacterial antibiotic susceptibility with flow cytometry.
    Mason DJ; Allman R; Stark JM; Lloyd D
    J Microsc; 1994 Oct; 176(Pt 1):8-16. PubMed ID: 7799429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays.
    Wolff C; Fuks B; Chatelain P
    J Biomol Screen; 2003 Oct; 8(5):533-43. PubMed ID: 14567780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow cytometric enumeration of bacteria using TO-PRO®-3 iodide as a single-stain viability dye.
    Kerstens M; Boulet G; Tritsmans C; Horemans T; Hellings M; Delputte P; Maes L; Cos P
    J Lab Autom; 2014 Dec; 19(6):555-61. PubMed ID: 25124156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow cytometry and cell sorting for yeast viability assessment and cell selection.
    Deere D; Shen J; Vesey G; Bell P; Bissinger P; Veal D
    Yeast; 1998 Jan; 14(2):147-60. PubMed ID: 9483803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.