BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 7537337)

  • 21. Fast voltage clamp discloses a new component of presteady-state currents from the Na(+)-glucose cotransporter.
    Chen XZ; Coady MJ; Lapointe JY
    Biophys J; 1996 Nov; 71(5):2544-52. PubMed ID: 8913593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi-2).
    Forster I; Hernando N; Biber J; Murer H
    J Gen Physiol; 1998 Jul; 112(1):1-18. PubMed ID: 9649580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein.
    Panayotova-Heiermann M; Loo DD; Kong CT; Lever JE; Wright EM
    J Biol Chem; 1996 Apr; 271(17):10029-34. PubMed ID: 8626557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a Na+/glucose cotransporter cloned from rabbit small intestine.
    Ikeda TS; Hwang ES; Coady MJ; Hirayama BA; Hediger MA; Wright EM
    J Membr Biol; 1989 Aug; 110(1):87-95. PubMed ID: 2795642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protons drive sugar transport through the Na+/glucose cotransporter (SGLT1).
    Hirayama BA; Loo DD; Wright EM
    J Biol Chem; 1994 Aug; 269(34):21407-10. PubMed ID: 8063771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression.
    Lee WS; Kanai Y; Wells RG; Hediger MA
    J Biol Chem; 1994 Apr; 269(16):12032-9. PubMed ID: 8163506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opposing effects of tumour necrosis factor alpha and hyperosmolarity on Na+/myo-inositol co-transporter mRNA levels and myo-inositol accumulation by 3T3-L1 adipocytes.
    Yorek MA; Dunlap JA; Lowe WL
    Biochem J; 1998 Dec; 336 ( Pt 2)(Pt 2):317-25. PubMed ID: 9820807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human Na(+)-myo-inositol cotransporter gene: alternate splicing generates diverse transcripts.
    Porcellati F; Hlaing T; Togawa M; Stevens MJ; Larkin DD; Hosaka Y; Glover TW; Henry DN; Greene DA; Killen PD
    Am J Physiol; 1998 May; 274(5):C1215-25. PubMed ID: 9612208
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter.
    Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY
    Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein.
    Kwon HM; Yamauchi A; Uchida S; Preston AS; Garcia-Perez A; Burg MB; Handler JS
    J Biol Chem; 1992 Mar; 267(9):6297-301. PubMed ID: 1372904
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics and stoichiometry of a proton/myo-inositol cotransporter.
    Klamo EM; Drew ME; Landfear SM; Kavanaugh MP
    J Biol Chem; 1996 Jun; 271(25):14937-43. PubMed ID: 8663013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternate splicing in human Na+-MI cotransporter gene yields differentially regulated transport isoforms.
    Porcellati F; Hosaka Y; Hlaing T; Togawa M; Larkin DD; Karihaloo A; Stevens MJ; Killen PD; Greene DA
    Am J Physiol; 1999 Jun; 276(6):C1325-37. PubMed ID: 10362595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization and rapid regulation of Na+/myo-inositol cotransporter in rat kidney.
    Yamauchi A; Miyai A; Shimada S; Minami Y; Tohyama M; Imai E; Kamada T; Ueda N
    J Clin Invest; 1995 Sep; 96(3):1195-201. PubMed ID: 7657791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuroprotective role of Na+/myo-inositol cotransporter against veratridine cytotoxicity.
    Yamashita T; Yamauchi A; Miyai A; Taniguchi M; Yoshimine T; Tohyama M
    J Neurochem; 1999 May; 72(5):1864-70. PubMed ID: 10217262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization and regulation of renal Na+/myo-inositol cotransporter in diabetic rats.
    Wiese TJ; Matsushita K; Lowe WL; Stokes JB; Yorek MA
    Kidney Int; 1996 Oct; 50(4):1202-11. PubMed ID: 8887279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage and substrate dependence of the inverse transport mode of the rabbit Na(+)/glucose cotransporter (SGLT1).
    Sauer GA; Nagel G; Koepsell H; Bamberg E; Hartung K
    FEBS Lett; 2000 Mar; 469(1):98-100. PubMed ID: 10708764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenylglucosides and the Na+/glucose cotransporter (SGLT1): analysis of interactions.
    Lostao MP; Hirayama BA; Loo DD; Wright EM
    J Membr Biol; 1994 Nov; 142(2):161-70. PubMed ID: 7884808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pH dependence of Na+/myo-inositol cotransporters in rat thick limb cells.
    Eladari D; Chambrey R; Pezy F; Podevin RA; Paillard M; Leviel F
    Kidney Int; 2002 Dec; 62(6):2144-51. PubMed ID: 12427139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter.
    Chen XZ; Coady MJ; Jalal F; Wallendorff B; Lapointe JY
    Biophys J; 1997 Nov; 73(5):2503-10. PubMed ID: 9370443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes.
    Mackenzie B; Loo DD; Wright EM
    J Membr Biol; 1998 Mar; 162(2):101-6. PubMed ID: 9538503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.