These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 7537420)

  • 1. Exocytotic Ca2+ channels in mammalian central neurons.
    Dunlap K; Luebke JI; Turner TJ
    Trends Neurosci; 1995 Feb; 18(2):89-98. PubMed ID: 7537420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivation.
    Macleod GT; Chen L; Karunanithi S; Peloquin JB; Atwood HL; McRory JE; Zamponi GW; Charlton MP
    Eur J Neurosci; 2006 Jun; 23(12):3230-44. PubMed ID: 16820014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component.
    Yang TT; Wang SJ
    Neurochem Int; 2008 May; 52(6):979-89. PubMed ID: 18037536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes).
    Hung KL; Wang CC; Huang CY; Wang SJ
    Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Presynaptic 'Ca2.3-containing' E-type Ca channels share dual roles during neurotransmitter release.
    Kamp MA; Krieger A; Henry M; Hescheler J; Weiergräber M; Schneider T
    Eur J Neurosci; 2005 Mar; 21(6):1617-25. PubMed ID: 15845089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoic acid induction of calcium channel expression in human NT2N neurons.
    Gao ZY; Xu G; Stwora-Wojczyk MM; Matschinsky FM; Lee VM; Wolf BA
    Biochem Biophys Res Commun; 1998 Jun; 247(2):407-13. PubMed ID: 9642141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis.
    Lerner I; Trus M; Cohen R; Yizhar O; Nussinovitch I; Atlas D
    J Neurochem; 2006 Apr; 97(1):116-27. PubMed ID: 16515555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of presynaptic calcium channels displaying different synaptic properties.
    Kamp MA; Hänggi D; Steiger HJ; Schneider T
    Rev Neurosci; 2012 Feb; 23(2):179-90. PubMed ID: 22499676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-cell patch clamp recording of voltage-sensitive Ca²+ channel currents: heterologous expression systems and dissociated brain neurons.
    Hainsworth AH; Randall AD; Stefani A
    Methods Mol Biol; 2005; 312():161-79. PubMed ID: 21341098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells.
    Alvarez YD; Ibañez LI; Uchitel OD; Marengo FD
    Cell Calcium; 2008 Feb; 43(2):155-64. PubMed ID: 17561253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do G proteins directly control neuronal Ca2+ channel function?
    De Waard M; Hering J; Weiss N; Feltz A
    Trends Pharmacol Sci; 2005 Aug; 26(8):427-36. PubMed ID: 16009433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels.
    Lee A; Wong ST; Gallagher D; Li B; Storm DR; Scheuer T; Catterall WA
    Nature; 1999 May; 399(6732):155-9. PubMed ID: 10335845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role for Ca2+ channels in the signal transduction pathway leading to acrosomal exocytosis in human spermatozoa.
    O'Toole CM; Roldan ER; Fraser LR
    Mol Reprod Dev; 1996 Oct; 45(2):204-11. PubMed ID: 8914078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calmodulin supports both inactivation and facilitation of L-type calcium channels.
    Zühlke RD; Pitt GS; Deisseroth K; Tsien RW; Reuter H
    Nature; 1999 May; 399(6732):159-62. PubMed ID: 10335846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting mechanisms of high voltage-activated Ca2+ channels.
    Herlitze S; Xie M; Han J; Hümmer A; Melnik-Martinez KV; Moreno RL; Mark MD
    J Bioenerg Biomembr; 2003 Dec; 35(6):621-37. PubMed ID: 15000523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Channeling calcium: a shared mechanism for exocytosis-endocytosis coupling.
    Vogel SS
    Sci Signal; 2009 Dec; 2(102):pe80. PubMed ID: 20029028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying neuronal non-L Ca2+ channels--more than stamp collecting?
    Nooney JM; Lambert RC; Feltz A
    Trends Pharmacol Sci; 1997 Oct; 18(10):363-71. PubMed ID: 9357321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serotonin release from the neuronal cell body and its long-lasting effects on the nervous system.
    De-Miguel FF; Leon-Pinzon C; Noguez P; Mendez B
    Philos Trans R Soc Lond B Biol Sci; 2015 Jul; 370(1672):. PubMed ID: 26009775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rocking and rolling with Ca2+ channels.
    Miller RJ
    Trends Neurosci; 2001 Aug; 24(8):445-9. PubMed ID: 11476883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of calcium channel properties in cultured leech retzius cells by internal perfusion, voltage-clamp and single-channel recording.
    Bookman RJ; Liu Y
    J Exp Biol; 1990 Mar; 149():223-37. PubMed ID: 2157789
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.