These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7537491)

  • 41. Mimicking rubella virus particles by using recombinant envelope glycoproteins and liposomes.
    Orellana A; Mottershead D; van der Linden I; Keinänen K; Oker-Blom C
    J Biotechnol; 1999 Oct; 75(2-3):209-19. PubMed ID: 10553659
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure of rubella E1 glycoprotein epitopes established by multiple peptide synthesis.
    Lozzi L; Rustici M; Corti M; Cusi MG; Valensin PE; Bracci L; Santucci A; Soldani P; Spreafico A; Neri P
    Arch Virol; 1990; 110(3-4):271-6. PubMed ID: 1690535
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cellular hyperimmunoreactivity to rubella virus synthetic peptides in chronic rubella associated arthritis.
    Mitchell LA; Décarie D; Shukin R; Tingle AJ; Ford DK; Lacroix M; Zrein M
    Ann Rheum Dis; 1993 Aug; 52(8):590-4. PubMed ID: 8215622
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recognition of synthetic peptides with sequences of rubella virus E1 polypeptide by antibodies and T lymphocytes.
    Ilonen J; Seppänen H; Närvänen A; Korkolainen M; Salmi AA
    Viral Immunol; 1992; 5(3):221-8. PubMed ID: 1384533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica.
    Roehrig JT; Bolin RA; Kelly RG
    Virology; 1998 Jul; 246(2):317-28. PubMed ID: 9657950
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of site-directed asparagine to isoleucine substitutions at the N-linked E1 glycosylation sites on rubella virus viability.
    Ramanujam M; Hofmann J; Nakhasi HL; Atreya CD
    Virus Res; 2001 Dec; 81(1-2):151-6. PubMed ID: 11682134
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Expression and bioassay of rubella virus E1-374 glycoprotein in yeast cells].
    Li ZM; Wen HL; Lin B; Sun CX; Chu FL; Yuan XJ; Song YY; Xu HZ; Wang ZY
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 2013 Aug; 27(4):295-7. PubMed ID: 24579480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of strain-specific nucleotide sequences in the RA 27/3 rubella virus vaccine.
    Frey TK; Abernathy ES
    J Infect Dis; 1993 Oct; 168(4):854-64. PubMed ID: 8376831
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Generation of rubella virus-neutralising antibodies by vaccination with synthetic peptides.
    Robinson K; Mostratos A; Grencis RK
    FEMS Immunol Med Microbiol; 1995 Feb; 10(3-4):191-8. PubMed ID: 7539669
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Probing Zika Virus Neutralization Determinants with Glycoprotein Mutants Bearing Linear Epitope Insertions.
    Chambers MT; Schwarz MC; Sourisseau M; Gray ES; Evans MJ
    J Virol; 2018 Sep; 92(18):. PubMed ID: 29976678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Point mutation of a rubella virus E1 protein T-cell epitope by substitution of single amino acid reversed the restrictive HLA-DR polymorphism: a possible mechanism maintaining HLA polymorphism.
    Ou D; Mitchell LA; Décarie D; Tingle AJ; Lacroix M; Zrein M
    Viral Immunol; 1998; 11(2):93-102. PubMed ID: 9765031
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low pH-induced conformational change of rubella virus envelope proteins.
    Katow S; Sugiura A
    J Gen Virol; 1988 Nov; 69 ( Pt 11)():2797-807. PubMed ID: 3183629
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure and antigenic activity of rubella E1 glycoprotein synthetic peptides.
    Neri P; Corti M; Lozzi L; Valensin PE
    Biopolymers; 1991 May; 31(6):631-5. PubMed ID: 1932562
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Rubella virus genetic determinant of attenuation].
    Dmitriev GV; Borisova TK; Faizuloev EB; Desiatskova RG; Zverev VV
    Vopr Virusol; 2014; 59(6):12-5. PubMed ID: 25929030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Variants of Venezuelan equine encephalitis virus that resist neutralization define a domain of the E2 glycoprotein.
    Johnson BJ; Brubaker JR; Roehrig JT; Trent DW
    Virology; 1990 Aug; 177(2):676-83. PubMed ID: 1695412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spontaneous mutations leading to antigenic variations in the glycoproteins of vesicular stomatitis virus field isolates.
    Luo LZ; Li Y; Snyder RM; Wagner RR
    Virology; 1990 Jan; 174(1):70-8. PubMed ID: 1688475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection and comparison of viral antigens in measles and rubella rashes.
    Takahashi H; Umino Y; Sato TA; Kohama T; Ikeda Y; Iijima M; Fujisawa R
    Clin Infect Dis; 1996 Jan; 22(1):36-9. PubMed ID: 8824963
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monoclonal antibodies that bind to common epitopes on the dengue virus type 2 nonstructural-1 and envelope glycoproteins display weak neutralizing activity and differentiated responses to virulent strains: implications for pathogenesis and vaccines.
    Falconar AK
    Clin Vaccine Immunol; 2008 Mar; 15(3):549-61. PubMed ID: 18160621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a rubella virus DNA vaccine.
    Pougatcheva SO; Abernathy ES; Vzorov AN; Compans RW; Frey TK
    Vaccine; 1999 Apr; 17(15-16):2104-12. PubMed ID: 10217613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vaccinia-vectored expression of the rubella virus structural proteins and characterization of the E1 and E2 glycosidic linkages.
    Sanchez A; Frey TK
    Virology; 1991 Aug; 183(2):636-46. PubMed ID: 1853566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.