These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 7538004)
1. Transport mechanisms of enoxacin in rat brush-border membrane of renal cortex: interaction with organic cation transport system and ionic diffusion potential dependent uptake. Hirano T; Iseki K; Sugawara M; Miyazaki S; Takada M; Miyazaki K Biol Pharm Bull; 1995 Feb; 18(2):342-6. PubMed ID: 7538004 [TBL] [Abstract][Full Text] [Related]
2. The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes. Hirano T; Iseki K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K J Pharm Pharmacol; 1994 Aug; 46(8):676-9. PubMed ID: 7815283 [TBL] [Abstract][Full Text] [Related]
3. Ionic-diffusion potential-dependent transport of a new quinolone, sparfloxacin, across rat intestinal brush-border membrane. Iseki K; Hirano T; Tsuji K; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K J Pharm Pharmacol; 1998 Jun; 50(6):627-34. PubMed ID: 9680072 [TBL] [Abstract][Full Text] [Related]
4. The transport mechanism of an organic cation, disopyramide, by brush-border membranes. Comparison between renal cortex and small intestine of the rat. Takahashi Y; Itoh T; Kobayashi M; Sugawara M; Saitoh H; Iseki K; Miyazaki K; Miyazaki S; Takada M; Kawashima Y J Pharm Pharmacol; 1993 May; 45(5):419-24. PubMed ID: 8099959 [TBL] [Abstract][Full Text] [Related]
5. The pH dependent uptake of enoxacin by rat intestinal brush-border membrane vesicles. Iseki K; Hirano T; Fukushi Y; Kitamura Y; Miyazaki S; Takada M; Sugawara M; Saitoh H; Miyazaki K J Pharm Pharmacol; 1992 Sep; 44(9):722-6. PubMed ID: 1360522 [TBL] [Abstract][Full Text] [Related]
6. pH-dependent transport of cadmium in rat renal brush border membrane vesicles: cadmium efflux via H+-antiport. Endo T; Kimura O; Sakata M Toxicol Lett; 1998 Oct; 99(2):99-107. PubMed ID: 9817081 [TBL] [Abstract][Full Text] [Related]
7. [The uptake of nalidixic acid and enoxacin by rat renal cortical slices in rat]. Oda M; Sasaya M; Hirano T; Nakajima Y; Iwata K; Chiba K; Miyazaki S; Takada M Yakugaku Zasshi; 1995 May; 115(5):394-9. PubMed ID: 7595867 [TBL] [Abstract][Full Text] [Related]
8. The intestinal transport mechanism of fluoroquinolones: inhibitory effect of ciprofloxacin, an enoxacin derivative, on the membrane potential-dependent uptake of enoxacin. Hirano T; Iseki K; Sato I; Miyazaki S; Takada M; Kobayashi M; Sugawara M; Miyazaki K Pharm Res; 1995 Sep; 12(9):1299-303. PubMed ID: 8570525 [TBL] [Abstract][Full Text] [Related]
9. pH sensitivity of H+/organic cation antiport system in rat renal brush-border membranes. Maegawa H; Kato M; Inui K; Hori R J Biol Chem; 1988 Aug; 263(23):11150-4. PubMed ID: 2841320 [TBL] [Abstract][Full Text] [Related]
10. Procainamide transport in rabbit renal cortical brush border membrane vesicles. McKinney TD; Kunnemann ME Am J Physiol; 1985 Oct; 249(4 Pt 2):F532-41. PubMed ID: 4051006 [TBL] [Abstract][Full Text] [Related]
11. Evidence for an organic cation-proton antiport system in brush-border membranes isolated from the human term placenta. Ganapathy V; Ganapathy ME; Nair CN; Mahesh VB; Leibach FH J Biol Chem; 1988 Apr; 263(10):4561-8. PubMed ID: 3350804 [TBL] [Abstract][Full Text] [Related]
12. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles. Shiuan D; Weinstein SW Am J Physiol; 1984 Nov; 247(5 Pt 2):F837-47. PubMed ID: 6093593 [TBL] [Abstract][Full Text] [Related]
13. Uptake of lamivudine by rat renal brush border membrane vesicles. Takubo T; Kato T; Kinami J; Hanada K; Ogata H J Pharm Pharmacol; 2002 Jan; 54(1):111-7. PubMed ID: 11829121 [TBL] [Abstract][Full Text] [Related]
14. The transport mechanisms of organic cations and their zwitterionic derivatives across rat intestinal brush-border membrane. II. Comparison of the membrane potential effect on the uptake by membrane vesicles. Iseki K; Sugawara M; Saitoh N; Miyazaki K Biochim Biophys Acta; 1993 Oct; 1152(1):9-14. PubMed ID: 8399309 [TBL] [Abstract][Full Text] [Related]
15. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles. Takano M; Inui K; Okano T; Saito H; Hori R Biochim Biophys Acta; 1984 Jun; 773(1):113-24. PubMed ID: 6733090 [TBL] [Abstract][Full Text] [Related]
16. Trans-stimulation effect on H(+)-organic cation antiport system in rat renal brush-border membranes. Katsura T; Maegawa H; Tomita Y; Takano M; Inui K; Hori R Am J Physiol; 1991 Nov; 261(5 Pt 2):F774-8. PubMed ID: 1951708 [TBL] [Abstract][Full Text] [Related]
17. Cimetidine transport in rabbit renal cortical brush-border membrane vesicles. McKinney TD; Kunnemann ME Am J Physiol; 1987 Mar; 252(3 Pt 2):F525-35. PubMed ID: 3826391 [TBL] [Abstract][Full Text] [Related]
18. H+ gradient-dependent transport of aminocephalosporins in rat renal brush border membrane vesicles: role of H+/organic cation antiport system. Inui K; Takano M; Okano T; Hori R J Pharmacol Exp Ther; 1985 Apr; 233(1):181-5. PubMed ID: 2984412 [TBL] [Abstract][Full Text] [Related]
19. Transport of thiamin in rat renal brush border membrane vesicles. Gastaldi G; Cova E; Verri A; Laforenza U; Faelli A; Rindi G Kidney Int; 2000 May; 57(5):2043-54. PubMed ID: 10792623 [TBL] [Abstract][Full Text] [Related]
20. Cimetidine transport in rat renal brush border and basolateral membrane vesicles. Takano M; Inui K; Okano T; Hori R Life Sci; 1985 Oct; 37(17):1579-85. PubMed ID: 4058242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]